Главная » Красота » Актуальные и нерешенные проблемы современной физики. Нерешённые проблемы современной физики

Актуальные и нерешенные проблемы современной физики. Нерешённые проблемы современной физики

Нерешенные проблемы

Теперь, уяснив, как наука вписывается в умственную деятельность человека и как она функционирует, можно видеть, что ее открытость позволяет различными путями идти к более полному постижению Вселенной. Возникают новые явления, по поводу которых гипотезы хранят молчание, и, чтобы нарушить его, выдвигаются новые гипотезы, полные свежих идей. На их основе уточняются предсказания. Создается новое экспериментальное оборудование. Вся эта деятельность приводит к появлению гипотез, более точно отражающих поведение Вселенной. И все это ради одной цели - понять Вселенную во всем ее многообразии.

Научные гипотезы можно рассматривать как ответы на вопросы об устройстве Вселенной. Наша же задача состоит в исследовании пяти крупнейших проблем, не решенных до настоящего времени. Под словом «крупнейшие» подразумеваются проблемы, имеющие далеко идущие последствия, самые важные для нашего дальнейшего понимания, или обладающие наиболее весомым прикладным значением. Мы ограничимся одной крупнейшей нерешенной проблемой, взятой из кажсдой пяти отраслей естествознания, и попытаемся описать, каким образом можно ускорить их решение. Конечно, науки о человеке и обществе, гуманитарные и прикладные, имеют свои нерешенные проблемы (например, природа сознания), но данный вопрос выходит за рамки этой книги.

Вот отобранные нами в каждой из пяти отраслей естествознания крупнейшие нерешенные проблемы и то, чем мы руководствовались в своем выборе.

Физика. Связанные с движением свойства массы тела (скорость, ускорение и момент наряду с кинетической и потенциальной энергией) нам хорошо известны. А природа самой массы, присущей многим, но не всем элементарным частицам Вселенной, нам не понятна. Крупнейшая нерешенная задача физики такова: почему одни частицы обладают массой [покоя], а другие - нет?

Химия. Изучение химических реакций живых и неживых тел ведется широко и весьма успешно. Крупнейшая нерешенная задача химии такова: какого рода химические реакции подтолкнули атомы к образованию первых живых существ?

Биология. Недавно удалось получить геном, или молекулярный чертеж, многих живых организмов. Геномы несут информацию об общих белках, или протеоме, живых организмов. Крупнейшая нерешенная задача биологии такова: каково строение и предназначение протеома?

Геология. Модель тектоники плит удовлетворительно описывает последствия взаимодействия верхних оболочек Земли. Но атмосферные явления, особенно тип погоды, похоже, не поддаются попыткам создать модели, ведущие к получению надежных прогнозов. Крупнейшая нерешенная задача геологии такова: возможен ли точный долговременный прогноз погоды?

Астрономия. Хотя многие стороны общего устройства Вселенной хорошо известны, в ее развитии еще много неясного. Недавнее открытие, что скорость расширения Вселенной возрастает, приводит к мысли, что она будет расширяться бесконечно. Крупнейшая нерешенная задача астрономии такова: почему Вселенная расширяется со все большей скоростью?

Многие иные занимательные вопросы, связанные с этими задачами, будут возникать попутно, и некоторые из них сами могут в будущем стать крупнейшими. Об этом идет речь в заключительном разделе книги: «Список идей».

Уильям Гарвей, английский врач XVII века, определивший природу кровообращения, сказал: «Все, что мы знаем, бесконечно мало по сравнению с тем, что нам пока неведомо» [ «Анатомическое исследование о движении сердца и крови у животных», 1628]. И это верно, поскольку вопросы множатся быстрее, чем на них успевают ответить. По мере расширения освещаемого наукой пространства увеличивается и обступающий его мрак.

Из книги Занимательно об астрономии автора Томилин Анатолий Николаевич

5. Проблемы релятивистской астронавигации Одним из самых противных испытаний, которым подвергается летчик, а сейчас космонавт, как это показывают в кино, является карусель. Мы, летчики недавнего прошлого, в свое время называли ее «вертушкой» или «сепаратором». Тех, кто не

Из книги Пять нерешенных проблем науки автора Уиггинс Артур

Проблемы физики Какова природа света?Свет в некоторых случаях ведет себя подобно волне, а во многих других - сродни частице. Спрашивается: что же он такое? Ни то, ни другое. Частица и волна - лишь упрощенное представление о поведении света. На самом же деле свет не частица

Из книги Самосознающая вселенная. Как сознание создает материальный мир автора Госвами Амит

Проблемы химии Как состав молекулы определяет ее облик?Знание орбитального строения атомов в простых молекулах позволяет довольно легко определить внешний вид молекулы. Однако теоретические исследования облика сложных молекул, особенно биологически важных, пока не

Из книги Мир в ореховой скорлупке [илл. книга-журнал] автора Хокинг Стивен Уильям

Проблемы биологии Как развивается целый организм из одной оплодотворенной яйцеклетки?На данный вопрос, похоже, удастся ответить, как только будет решена главная задача из гл. 4: каково устроение и предназначение протеома? Конечно, каждому организму свойственны свои

Из книги История лазера автора Бертолотти Марио

Проблемы геологии Что вызывает большие перемены в климате Земли наподобие повсеместного потепления и ледниковых периодов?Ледниковые периоды, свойственные Земле последние 35 млн. лет, наступали примерно каждые 100 тыс. лет. Ледники надвигаются и отступают по всему

Из книги Атомная проблема автора Рэн Филипп

Проблемы астрономии Одиноки ли мы во Вселенной?Несмотря на отсутствие каких-либо экспериментальных свидетельств существования внеземной жизни, теорий на этот счет хватает с избытком, как и попыток обнаружить весточки от далеких цивилизаций.Как эволюционируют

Из книги Астероидно-кометная опасность: вчера, сегодня, завтра автора Шустов Борис Михайлович

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

Нерешённые проблемы современной физики

Из книги Гравитация [От хрустальных сфер до кротовых нор] автора Петров Александр Николаевич

Теоретические проблемы Вставка из Википедии.Psychedelic - август 2013Ниже приведён список нерешённых проблем современной физики. Некоторые из этих проблем носят теоретический характер, что означает, что существующие теории оказываются неспособными объяснить определённые

Из книги Идеальная теория [Битва за общую теорию относительности] автора Феррейра Педро

ГЛАВА 14 РЕШЕНИЕ В ПОИСКЕ ПРОБЛЕМЫ ИЛИ МНОГИЕ ПРОБЛЕМЫ С ОДНИМ И ТЕМ ЖЕ РЕШЕНИЕМ? ПРИМЕНЕНИЯ ЛАЗЕРОВ В 1898 г. г. Уэллс вообразил в своей книге «Война миров» захват Земли марсианами, которые использовали лучи смерти, способные без труда проходить через кирпичи, сжигать леса, и

Из книги автора

II. Социальная сторона проблемы Эта сторона проблемы является, без сомнения, самой важной и самой интересной. Ввиду ее большой сложности мы ограничимся здесь лишь самыми общими соображениями.1. Изменения в мировой экономической географии.Как мы видели выше, стоимость

Из книги автора

1.2. Астрономический аспект проблемы АКО Вопрос об оценках значимости астероидно-кометной опасности связан, в первую очередь, с нашим знанием о населенности Солнечной системы малыми телами, особенно теми, что могут столкнуться с Землей. Такие знания дает астрономия.

Из книги автора

Из книги автора

Из книги автора

Новые проблемы космологии Вернемся к парадоксам нерелятивистской космологии. Вспомним, что причина гравитационного парадокса в том, что для однозначного определения гравитационного воздействия либо недостаточно уравнений, либо нет возможности корректно задать

Из книги автора

Глава 9. Проблемы унификации В 1947 году только что окончивший аспирантуру Брайс Девитт встретился с Вольфгангом Паули и рассказал, что работает над квантованием гравитационного поля. Девитт не понимал, почему две великие концепции XX века - квантовая физика и общая теория

Любая физическая теория, которая противоречит

существованию человека, очевидно неверна.

П. Девис

Что нам требуется, так это дарвиновский взгляд на физику, эволюционный взгляд на физику, биологический взгляд на физику.

И. Пригожин

До 1984 г. большинство учёных верили в теорию суперсимметрии (супергравитации, суперсилы) . Суть её в том, что все частицы (частицы вещества, гравитоны, фотоны, бозоны и глюоны) – разные виды одной “суперчастицы”.

Эта “суперчастица” или “суперсила” с понижением энергии предстаёт перед нами в разных ипостасях, как сильное и слабое взаимодействия, как электромагнитная и гравитационная силы. Но сегодня в эксперименте ещё не достигли энергий для проверки данной теории (нужен циклотрон размерами с Солнечную систему), проверка же на компьютере заняла бы более 4 лет. С. Вайнберг считает, что физика вступает в эру, когда эксперименты уже не в состоянии пролить свет на фундаментальные проблемы (Девис 1989; Хокинг 1990: 134; Налимов 1993: 16).

В 80-х гг. становится популярной струнная теория . Под редакцией П. Девиса и Дж. Брауна в 1989 г. выходит книга с характерным названием Сверхструны: теория всего ? Согласно теории, микрочастицы – не точечные объекты, а тонкие кусочки струны, определяемые длиной и открытостью. Частицы – волны, бегущие по струнам, как волны по верёвке. Испускание частицы – соединение, поглощение частицы-переносчика – разъединение. Солнце действует на Землю через гравитон, бегущий по струне (Хокинг 1990: 134-137).

Теория квантового поля поместила наши размышления о природе материи в новый контекст, разрешила проблему пустоты. Она заставила нас перевести взгляд с того, что “можно увидеть”, то есть частиц, на невидимое, то есть поле. Присутствие материи есть всего лишь возбуждённое состояние поля в данной точке. Придя к понятию квантового поля, физика нашла ответ на старый вопрос о том, из чего же состоит вещество – из атомов или континуума, лежащего в основе всего. Поле есть континуум, пронизывающий всё Пр, который, тем не менее, имеет протяжённую, как бы “гранулярную”, структуру в одном из своих проявлений, то есть в форме частиц. Теория квантового поля современной физики изменила представления о силах, помогает в решении проблем сингулярности и пустоты:

    в субатомной физике нет сил, действующих на расстоянии, их заменяют взаимодействия между частицами, происходящие через посредство полей, то есть других частиц, не сила, а взаимодействие;

    необходимо отказаться от противопоставления “материальные” частицы – пустота; частицы связаны с Пр и не могут рассматриваться в отрыве от него; частицы оказывают влияние на структуру Пр, они являются не самостоятельными частицами, а, скорее сгустками в беспредельном поле, пронизывающем всё Пр;

    наша Вселенная рождается из сингулярности, вакуумной неустойчивости;

    поле существует всегда и везде: оно не может исчезнуть. Поле есть проводник для всех материальных явлений. Это “пустота”, из которой протон создаёт π-мезоны. Возникновение и исчезновение частиц – лишь формы движения поля. Теория поля утверждает, что рождение частиц из вакуума и превращение частиц в вакуум происходят постоянно . Большинство физиков считают открытие динамической сущности и самоорганизации вакуума одним из важнейших достижений современной физики (Капра 1994: 191-201).

Но есть и нерешённые проблемы: обнаружено сверхточное самосогласование вакуумных структур, через которые выражаются параметры микро-частиц. Вакуумные структуры должны быть согласованы с точностью до 55-ого знака после запятой. За этой самоорганизацией вакуума стоят неизвестные нам законы нового типа. Антропный принцип 35 и есть следствие этой самоорганизации, суперсилы.

Теория S-матрицы описывает адроны, ключевое понятие теории было предложено В. Гейзенбергом, на этой основе учёные построили математическую модель для описания сильных взаимодействий. S-матрица получила своё название потому, что всю совокупность адронных реакций представили в виде бесконечной последовательности ячеек, которая в математике называется матрицей. Буква “S” сохранилась от полного названия этой матрицы – матрица рассеивания (scattering) (Капра 1994: 232-233).

Важным нововведением этой теории является то, что она переносит акценты с объектов на события, исследуются не частицы, а реакции частиц. По Гейзенбергу, мир делится не на различные группы объектов, а на различные группы взаимопревращений. Все частицы понимаются как промежуточные стадии в сети реакций. Например, нейтрон оказывается звеном в огромной сети взаимодействий, сети “переплетения событий”. Взаимодействия в такой сети не могут быть определены со стопроцентной точностью. Им можно приписать только вероятностные характеристики.

В динамическом контексте нейтрон может рассматриваться в качестве “связанного состояния” протона (р) и пиона (), из которых он образовался, а также в качестве связанного состояния частиц  и , которые образуются в результате его распада. Адронные реакции представляют собой поток энергии, в котором возникают и “исчезают” частицы (Капра 1994: 233-249).

Дальнейшее развитие теории S-матрицы привело к созданию бутстрэпной гипотезы , которую выдвинул Дж. Чу. Согласно гипотезе бутстрэпа, ни одно из свойств любого участка Вселенной не имеет фундаментального характера, все они обусловлены свойствами остальных участков сети, общая структура которой определяется универсальной согласованностью всех взаимосвязей.

Эта теория отрицает фундаментальные сущности (“кирпичики” материи, константы, законы, уравнения), Вселенная понимается как динамическая сеть взаимосвязанных событий.

В противоположность большинству физиков, Чу не мечтает о единственном решающем открытии, он видит свою задачу в медленном и постепенном создании сети взаимосвязанных понятий, ни одно из которых не является более фундаментальным, чем другие. В бутстрэпной теории частиц нет непрерывного Пр-Вр. Физическая реальность описывается в терминах изолированных событий, причинно связанных, но не вписанных в непрерывное Пр-Вр. Гипотеза бутстрэпа настолько чужда традиционному мышлению, что принимается меньшинством физиков. Большинство ищут фундаментальные составляющие материи (Капра 1994: 258-277, 1996: 55-57).

Теории атомной и субатомной физики выявили принципиальную взаимосвязанность различных аспектов существования материи, обнаружив, что энергия может переходить в массу, и, предположив, что частицы представляют собой скорее процессы, чем объекты.

Хотя поиск элементарных составляющих материи продолжается до сих пор, в физике представлено другое направление, исходящее из того, что строение мироздания нельзя сводить к каким-либо фундаментальным, элементарным, конечным единицам (фундаментальные поля, “элементарные” частицы). Природу следует понимать в самосогласованности. Эта идея возникла в русле теории S-матрицы, а в дальнейшем легла в основу гипотезы бутстрэпа (Налимов 1993: 41-42; Капра 1994: 258-259).

Чу надеялся осуществить синтез принципов квантовой теории, теории относительности (понятия макроскопического Пр-Вр), характеристик наблюдения и измерения на основе логической связности своей теории. Похожую программу разрабатывал Д. Бом и создал теорию имплицитного порядка . Он ввёл термин холодвижение , который используется для обозначения основы материальных сущностей и принимает во внимание как единство, так и движение. Начальной точкой для Бома является понятие “неделимой целостности”. Космической ткани присущ имплицитный, свёрнутый порядок, который можно описывать, пользуясь аналогией голограммы, в которой каждая часть содержит целое. Если осветить каждую часть голограммы, будет восстановлен весь образ. Некое подобие импликативного порядка свойственно и сознанию, и материи, поэтому он может способствовать связи между ними. В сознании, может быть, свёрнут весь материальный мир (Бом 1993: 11; Капра 1996: 56)!

Концепции Чу и Бома предполагают включение сознания в общую связь всего сущего. Доведённые до своего логического завершения, они предусматривают, что существование сознания, наряду с существованием всех остальных аспектов природы, необходимо для самосогласованности целого (Капра 1994: 259, 275).

Так философская проблема сознание–материя (проблема наблюдателя, проблема связи семантического и физического миров) становится серьёзной проблемой физики, “ускользая” от философов, об этом можно судить на основании:

    возрождения идей панпсихизма при попытке объяснить поведение микрочастиц, Р. Фейнман пишет 36 , что частица “решает”, “пересматривает”, “обнюхивает”, “чует”, “идёт верным путём” (Фейнман и др. 1966: 109);

    невозможности в квантовой механике разделить субъект и объект (В. Гейзенберг);

    сильного антропного принципа в космологии, предполагающего сознательное сотворение жизни, человека (Д. Картер);

    гипотез о слабых формах сознания, космическом сознании (Налимов 1993: 36-37, 61-64).

Физики пытаются включить сознание в картину физического мира. В книге П. Девиса, Дж. Брауна Дух в атоме говорится о роли процесса измерения в квантовой механике. Наблюдение мгновенно изменяет состояние квантовой системы. Изменение ментального состояния экспериментатора вступает в обратную связь с лабораторной аппаратурой и, , с квантовой системой, изменяя её состояние. По Дж. Джинсу, природа и наш математически мыслящий ум работают по одним и тем же законам. В.В. Налимов находит параллели в описании двух миров, физического и семантического:

    нераспакованный физический вакуум – возможность спонтанного рождения частиц;

    нераспакованный семантический вакуум – возможность спонтанного рождения текстов;

    распаковка вакуума есть рождение частиц и создание текстов (Налимов1993:54-61).

В.В. Налимов писал о проблеме раздробленности науки. Надо будет освободиться от локальности описания мироздания, при котором учёный оказывается озабоченным изучением некоего явления только в рамках своей узкой специальности. Существуют процессы, протекающие сходным образом на разных уровнях Универсума и нуждающиеся в едином, сквозном описании (Налимов 1993: 30).

Но пока современная физическая картина мира принципиально не завершена: самая сложная проблема физики – проблема объединения частных теорий, например, теория относительности не включает принцип неопределённости, теория гравитации не входит в теорию 3-х взаимодействий, в химии не учитывают строение ядра атома.

Не решена и проблема объединения в рамках одной теории 4 типов взаимодействий. До 30-х гг. считали, что существуют 2 типа сил на макроуровне – гравитационные и электромагнитные, но открыли слабое и сильное ядерные взаимодействия. Был открыт мир внутри протона и нейтрона (порог энергий выше, чем в центре звёзд). Будут ли открыты другие “элементарные” частицы?

Проблема объединения физических теорий связана с проблемой достижения высоких энергий . С помощью ускорителей вряд ли удастся возвести мост через пропасть планковской энергии (выше, чем 10 18 гига электрон-вольт) и того, что достигают сегодня в лаборатории в обозримом будущем.

В математических моделях теории супергравитации возникает проблема бесконечностей . В уравнениях, описывающих поведение микрочастиц, получаются бесконечные числа. Есть и другой аспект данной проблемы – старые философские вопросы: конечен или бесконечен мир в Пр-Вр? Если Вселенная расширяется из сингулярности планковских размеров, то куда она расширяется – в пустоту или происходит растяжение матрицы? Что окружало сингулярность – эту бесконечно маленькую точку до начала инфляции или наш мир “отпочковался” от Мегавселенной?

В струнных теориях тоже сохраняются бесконечности, но возникает проблема многомерности Пр-Вр, например, электрон – это малая вибрирующая струна планковской длины в 6-мерном и даже в 27-мерном Пр. Существуют и другие теории, согласно которым наше Пр на самом деле не 3-мерно, а, например, 10-мерно. Предполагается, что во всех направлениях, кроме 3 (х, у, z), Пр как бы свёрнуто в очень тонкую трубочку, “скомпактифицировано”. Поэтому мы можем двигаться лишь в 3 разных, независимых направлениях и Пр представляется нам 3-мерными. Но почему, если есть иные меры, развернулись только 3 Пр и 1 Вр меры? С. Хокинг иллюстрирует путешествие в разных измерениях примером бублика: 2-мерный путь по поверхности бублика длиннее пути через третье, объёмное измерение (Линде 1987: 5; Хокинг 1990: 138).

Другой аспект проблемы многомерности – проблема иных, не одномерных для нас миров. Существуют ли параллельные Вселенные 37 , неодномерные нам, и, наконец, могут ли существовать иные, неодномерные для нас формы жизни, разума? Теория струн допускает существование иных миров во Вселенной, существование 10- или 26-мерное Пр-Вр. Но если существуют иные меры, почему мы их не замечаем?

В физике и во всей науке возникает проблема создания универсального языка : наши обычные понятия не могут быть применены к строению атома. На абстрактном искусственном языке физики, математики процессы, паттерны современной физики не описываются. Что означают такие характеристики частиц как “очарованный” или “странный” ароматы кварков или “шизоидные” частицы? Это один из выводов книги Дао физики Ф. Капры. Какой же выход: вернуться к агностицизму, восточной мистической философии?

Гейзенберг считал: математические схемы адекватнее отражают эксперимент, чем искусственный язык, обычные понятия не могут быть применены к строению атома, Борн писал о проблеме символов для отражения реальных процессов (Гейзенберг 1989: 104-117).

Может быть, попытаться вычислить базисную матрицу естественного языка (вещь – связь – свойство и атрибут), то, что будет инвариантно к любым артикуляциям и, не критикуя многообразие искусственных языков, попытаться “заставить” говорить на одном общем естественном языке? Стратегическая роль синергетики и философии в решении проблемы создания универсального языка науки рассматривается в статье Диалектическая философия и синергетика (Федорович 2001: 180-211).

Создание единой физической теории и теории УИ, единой Э человека и природы является предельно сложной задачей науки. Один из важнейших вопросов современной философии науки: предопределёно ли наше будущее и какова наша роль. Если мы часть природы, можем ли мы играть какую-то роль в формировании мира, который находится в процессе строительства?

Если Вселенная едина, то может ли существовать единая теория реальности? С. Хокинг рассматривает 3 варианта ответа.

    Единая теория существует, и мы её когда-нибудь создадим. Так думал И. Ньютон; М. Борн в 1928 г. после открытия П. Дираком уравнения для электрона, написал: физика через полгода кончится.

    Теории постоянно уточняются и совершенствуются. С позиций эволюционной эпистемологии, научный прогресс – совершенствование когнитивной компетенции вида Homo Sapiens (К. Халвег). Все научные понятия и теории – это лишь приближения к истинной природе реальности, значимые лишь для определённого диапазона явлений. Э научного знания есть последовательная смена моделей, но ни одна модель не окончательна.

До сих пор не решён парадокс эволюционной картины мира: нисходящее направление Э в физике и восходящая тенденция усложнения в биологии. Несовместимость физики и биологии обнаружилась в ХIХ в., сегодня наметилась возможность разрешения коллизии физика–биология: эволюционное рассмотрение Вселенной в целом, трансляция эволюционного подхода в физику (Стёпин, Кузнецова 1994: 197-198; Хазен 2000).

И. Пригожин, которого Э. Тоффлер в предисловии книги Порядок из хаоса назвал Ньютоном ХХ в., говорил в одном из интервью о необходимости ввести в физику идеи необратимости, истории. Классическая наука описывает стабильность, равновесие, но существует другой мир – нестабильный, эволюционный, нужны другие слова, другая терминология, которой не существовало во Вр Ньютона. Но даже после Ньютона и Эйнштейна у нас нет чёткой формулы сущности мира. Природа очень сложное явление и мы – неотъемлемая часть природы, часть Вселенной, которая находится в постоянном саморазвитии (Хорган 2001: 351).

Возможные перспективы развития физики следующие: завершение построения единой физической теории, описывающей 3-хмерный физический мир и проникновение в иные Пр-Вр измерения; изучение новых свойств материи, видов излучения, энергии и скоростей, превышающих скорость света (торсионное излучение) и открытие возможности мгновенного перемещения в Метагалактике (в ряде теоретических работ показана возможность существования топологических туннелей, соединяющих любые области Метагалактики, МВ); установление связи физический мир – семантический мир, что попытался сделать В.В. Налимов (Гиндилис 2001: 143-145).

Но главное, что предстоит сделать физикам: включить в свои теории эволюционную идею. В физике второй половины ХХ в. утверждается понимание сложности микро- и мегамиров. Изменяется и представление об Э физической Вселенной: нет существующего без возникающего . Д. Хорган приводит такие слова И. Пригожина: мы не отцы времени. Мы – дети времени. Мы появились в результате эволюции. То, что нам требуется сделать, – это включить эволюционные модели в наши описания. Что нам требуется, так это дарвиновский взгляд на физику, эволюционный взгляд на физику, биологический взгляд на физику (Пригожин 1985; Хорган 2001: 353).

Ниже приведён список нерешённых проблем современной физики . Некоторые из этих проблем носят теоретический характер. Это означает, что существующие теории оказываются неспособными объяснить определённые наблюдаемые явления или экспериментальные результаты. Другие проблемы являются экспериментальными, а это означает, что имеются трудности в создании эксперимента по проверке предлагаемой теории или по более подробному исследованию какого-либо явления. Следующие проблемы являются либо фундаментальными теоретическими проблемами, либо теоретическими идеями, для которых отсутствуют экспериментальные данные. Некоторые из этих проблем тесно взаимосвязаны. Например, дополнительные измерения или суперсимметрия могут решить проблему иерархии. Считается, что полная теория квантовой гравитации способна ответить на бомльшую часть из перечисленных вопросов (кроме проблемы острова стабильности).

  • 1. Квантовая гравитация. Можно ли квантовую механику и общую теорию относительности объединить в единую самосогласованную теорию (возможно, это квантовая теория поля)? Является ли пространство-время непрерывным или оно дискретно? Будет ли самосогласованная теория использовать гипотетический гравитон или она будет полностью продуктом дискретной структуры пространства-времени (как в петлевой квантовой гравитации)? Существуют ли отклонения от предсказаний ОТО для очень малых или очень больших масштабов или в других чрезвычайных обстоятельствах, которые вытекают из теории квантовой гравитации?
  • 2. Чёрные дыры, исчезновение информации в чёрной дыре, излучение Хокинга. Производят ли чёрные дыры тепловое излучение, как это предсказывает теория? Содержит ли это излучение информацию об их внутренней структуре, как это предполагает дуальность тяготение-калибровочная инвариантность, или нет, как следует из оригинального расчета Хокинга? Если нет и чёрные дыры могут непрерывно испаряться, то что происходит с информацией, хранящейся в них (квантовая механика не предусматривает уничтожение информации)? Или излучение в какой-то момент остановится, когда от чёрной дыры мало что останется? Есть ли какой-либо другой способ исследования их внутренней структуры, если такая структура вообще существует? Выполняется ли закон сохранения барионного заряда внутри чёрной дыры? Неизвестно доказательство принципа космической цензуры, а также точная формулировка условий, при которых он выполняется. Отсутствует полная и законченная теория магнитосферы черных дыр. Неизвестна точная формула для вычисления числа различных состояний системы, коллапс которой приводит к возникновению черной дыры с заданными массой, моментом количества движения и зарядом. Неизвестно доказательство в общем случае "теоремы об отсутствии волос" у чёрной дыры.
  • 3. Размерность пространства-времени. Существуют ли в природе дополнительные измерения пространства-времени, кроме известных нам четырёх? Если да, то каково их количество? Является ли размерность «3+1» (или более высокая) априорным свойством Вселенной или она является результатом других физических процессов, как предполагает, например, теория причинной динамической триангуляции? Можем ли мы экспериментально «наблюдать» высшие пространственные измерения? Справедлив ли голографический принцип, по которому физика нашего «3+1»-мерного пространства-времени эквивалентна физике на гиперповерхности с размерностью «2+1»?
  • 4. Инфляционная модель Вселенной. Верна ли теория космической инфляции, и если да, то каковы подробные детали этой стадии? Что представляет собой гипотетическое инфлатонное поле, ответственное за рост инфляции? Если инфляция произошла в одной точке, является ли это началом самоподдерживающегося процесса за счёт инфляции квантово-механических колебаний, который будет продолжаться в совершенно другом, удалённом от этой точки месте?
  • 5. Мультивселенная. Существуют ли физические причины существования других вселенных, которые принципиально ненаблюдаемы? Например: существуют ли квантово-механические «альтернативные истории» или «множество миров»? Существуют ли «другие» вселенные с физическими законами, являющимися результатом альтернативных способов нарушения очевидной симметрии физических сил при высоких энергиях, расположенные, возможно, невероятно далеко из-за космической инфляции? Могли ли другие вселенные влиять на нашу, вызвав, например, аномалии в распределении температуры реликтового излучения? Является ли оправданным использование антропного принципа для решения глобальных космологических дилемм?
  • 6. Принцип космической цензуры и гипотеза защиты хронологии. Могут ли сингулярности, не скрывающиеся за горизонтом событий и известные как «голые сингулярности», возникать из реалистичных начальных условий, или же можно доказать какую-то версию «гипотезы космической цензуры» Роджера Пенроуза, в которой предполагается, что это невозможно? В последнее время появились факты в пользу несостоятельности гипотезы космической цензуры, а значит голые сингулярности должны встречаться гораздо чаще, чем только лишь как экстремальные решения уравнений Керра -- Ньюмена, тем не менее неоспоримых доказательств этому представлено ещё не было. Аналогично, будут лизамкнутые времениподобные кривые, которые возникают в некоторых решениях уравнений общей теории относительности (и которые предполагают возможность путешествия во времени в обратном направлении) исключены теорией квантовой гравитации, которая объединяет общую теорию относительности с квантовой механикой, как предполагает «гипотеза защиты хронологии» Стивена Хокинга?
  • 7. Ось времени. Что могут сказать нам о природе времени явления, которые отличаются друг от друга хождением по времени вперёд и назад? Чем время отличается от пространства? Почему нарушения CP-инвариантности наблюдаются только в некоторых слабых взаимодействиях и более нигде? Являются ли нарушения CP-инвариантности следствием второго закона термодинамики или же они являются отдельной осью времени? Есть ли исключения из принципа причинности? Является ли прошлое единственно возможным? Является ли настоящий момент физически отличным от прошлого и будущего или это просто результат особенностей сознания? Как люди научились договариваться о том, что является настоящим моментом? (См. также ниже Энтропия (ось времени)).
  • 8. Локальность. Существуют ли нелокальные явления в квантовой физике? Если существуют, не имеют ли они ограничения в передаче информации, или: может ли энергия и материя также двигаться по нелокальному пути? При каких условиях наблюдаются нелокальные явления? Что влечёт наличие или отсутствие нелокальных явлений для фундаментальной структуры пространства-времени? Как это связано с квантовой сцепленностью? Как это истолковать с позиций правильной интерпретации фундаментальной природы квантовой физики?
  • 9. Будущее Вселенной. Движется ли Вселенная по направлению к Большому замерзанию, Большому разрыву, Большому сжатию или Большому отскоку? Является ли наша Вселенная частью бесконечно повторяющейся циклической модели?
  • 10. Проблема иерархии. Почему гравитация является такой слабой силой? Она становится большой только в планковском масштабе, для частиц с энергией порядка 10 19 ГэВ, что гораздо выше электрослабого масштаба (в физике низких энергий доминирующей является энергия в 100 ГэВ). Почему эти масштабы так сильно отличаются друг от друга? Что мешает величинам электрослабого масштаба, таким как масса бозона Хиггса, получать квантовые поправки на масштабах порядка планковских? Являются ли решением этой проблемы суперсимметрия, дополнительные измерения или просто антропная тонкая настройка?
  • 11. Магнитный монополь. Существовали ли частицы -- носители «магнитного заряда» в какие-либо прошлые эпохи с более высокими энергиями? Если да, то есть ли какие-либо на сегодняшний день? (Поль Дирак показал, что наличие некоторых типов магнитных монополей могло бы объяснить квантование заряда.)
  • 12. Распад протона и Великое объединение. Как можно объединить три различных квантово-механических фундаментальных взаимодействия квантовой теории поля? Почему легчайший барион, являющийся протоном, абсолютно стабилен? Если же протон нестабилен, то каков его период полураспада?
  • 13. Суперсимметрия. Реализована ли суперсимметрия пространства в природе? Если да, то каков механизм нарушения суперсимметрии? Стабилизирует ли суперсимметрия электрослабый масштаб, предотвращая высокие квантовые поправки? Состоит ли тёмная материя из лёгких суперсимметричных частиц?
  • 14. Поколения материи. Существует ли более трёх поколений кварков и лептонов? Связано ли число поколений с размерностью пространства? Почему вообще существуют поколения? Существует ли теория, которая могла бы объяснить наличие массы у некоторых кварков и лептонов в отдельных поколениях на основании первых принципов (теория взаимодействия Юкавы)?
  • 15. Фундаментальная симметрия и нейтрино. Какова природа нейтрино, какова их масса и как они формировали эволюцию Вселенной? Почему сейчас во Вселенной обнаруживается вещества больше, чем антивещества? Какие невидимые силы присутствовали на заре Вселенной, но исчезли из поля зрения в процессе развития Вселенной?
  • 16. Квантовая теория поля. Совместимы ли принципы релятивистской локальной квантовой теории поля с существованием нетривиальной матрицы рассеяния?
  • 17. Безмассовые частицы. Почему безмассовые частицы без спина не существуют в природе?
  • 18. Квантовая хромодинамика. Каковы фазовые состояния сильно взаимодействующей материи и какую роль они играют в космосе? Каково внутреннее устройство нуклонов? Какие свойства сильно взаимодействующей материи предсказывает КХД? Что управляет переходом кварков и глюонов в пи-мезоны и нуклоны? Какова роль глюонов и глюонного взаимодействия в нуклонах и ядрах? Что определяет ключевые особенности КХД и каково их отношение к природе гравитации и пространства-времени?
  • 19. Атомное ядро и ядерная астрофизика. Какова природа ядерных сил, которая связывает протоны и нейтроны в стабильные ядра и редкие изотопы? Какова причина соединения простых частиц в сложные ядра? Какова природа нейтронных звёзд и плотной ядерной материи? Каково происхождение элементов в космосе? Что такое ядерные реакции, которые движут звёзды и приводят к их взрывам?
  • 20. Остров стабильности. Какое самое тяжёлое из стабильных или метастабильных ядер может существовать?
  • 21. Квантовая механика и принцип соответствия (иногда называемый квантовым хаосом). Есть ли предпочтительные интерпретации квантовой механики? Как квантовое описание реальности, которое включает в себя такие элементы, как квантовая суперпозиция состояний и коллапс волновой функции или квантовая декогеренция, приводят к реальности, которую мы видим? Сформулировать то же самое можно с помощью проблемы измерения: что представляет собой «измерение», которое заставляет волновую функцию сваливаться в определённое состояние?
  • 22. Физическая информация. Существуют ли физические феномены, такие как чёрные дыры или коллапс волновой функции, которые безвозвратно уничтожают информацию о своих предшествующих состояниях?
  • 23. Теория всего («Теории Великого объединения»). Существует ли теория, которая объясняет значения всех фундаментальных физических констант? Существует ли теория, которая объясняет, почему калибровочная инвариантность стандартной модели такая, как она есть, почему наблюдаемое пространство-время имеет 3 + 1 измерения, и поэтому законы физики таковы, как они есть? Меняются ли с течением времени «фундаментальные физические константы»? Являются ли какие-нибудь частицы в стандартной модели физики элементарных частиц на самом деле состоящими из других частиц, связанных настолько сильно, что их невозможно наблюдать при современных экспериментальных энергиях? Существуют ли фундаментальные частицы, которые ещё не наблюдались, и если да, то какие они и каковы их свойства? Существуют ли ненаблюдаемые фундаментальные силы, которые предполагает теория, объясняющие другие нерешённые проблемы физики?
  • 24. Калибровочная инвариантность. Существуют ли реально неабелевы калибровочные теории со щелью в спектре масс?
  • 25. CP-симметрия. Почему не сохраняется CP-симметрия? Почему она сохраняется в большинстве наблюдаемых процессов?
  • 26. Физика полупроводников. Квантовая теория полупроводников не может точно вычислить ни одной постоянной полупроводника.
  • 27. Квантовая физика. Неизвестно точное решение уравнения Шредингера для многоэлектронных атомов.
  • 28. При решении задачи о рассеянии двух пучков на одном препятствии сечение рассеяния получается бесконечно большим.
  • 29. Фейнманиум: Что будет происходить с химическим элементом, атомный номер которого окажется выше 137, вследствие чего 1s 1 -электрону придётся двигаться со скоростью, превышающей скорость света (согласно модели атома Бора)? Является ли «Фейнманиум» последним химическим элементом, способным существовать физически? Проблема может проявиться приблизительно на 137 элементе, где расширение дистрибуции заряда ядра достигает финальной точки. Смотрите статью Расширенная периодическая таблица элементов и секцию Relativistic effects.
  • 30. Статистическая физика. Отсутствует систематическая теория необратимых процессов, дающая возможность проводить количественные расчёты для любого заданного физического процесса.
  • 31. Квантовая электродинамика. Существуют ли гравитационные эффекты, вызываемые нулевыми колебаниями электромагнитного поля? Неизвестно, как при вычислениях квантовой электродинамики в области высоких частот одновременно выполнить условия конечности результата, релятивистской инвариантности и суммы всех альтернативных вероятностей, равной единице.
  • 32. Биофизика. Отсутствует количественная теория для кинетики конформационной релаксации белковых макромолекул и их комплексов. Отсутствует законченная теория электронного переноса в биологических структурах.
  • 33. Сверхпроводимость. Невозможно теоретически предсказать, зная структуру и состав вещества, перейдёт ли оно в сверхпроводящее состояние с понижением температуры.

Ниже мы приведем список нерешенных проблем современной физики.

Некоторые из этих проблем носят теоретический характер. Это означает, что существующие теории оказываются неспособными объяснить определённые наблюдаемые явления или экспериментальные результаты.

Другие проблемы являются экспериментальными, а это означает, что имеются трудности в создании эксперимента по проверке предлагаемой теории или по более подробному исследованию какого-либо явления.

Некоторые из этих проблем тесно взаимосвязаны. Например, дополнительные измерения или суперсимметрия могут решить проблему иерархии. Считается, что полная теория квантовой гравитации способна ответить на бо́льшую часть из перечисленных вопросов.

Каким будет конец Вселенной?

Разгадка во многом зависит от тёмной энергии, которая остаётся неизвестным членом уравнения.

Тёмная энергия ответственна за ускоряющееся расширение Вселенной, но ее происхождение - тайна, покрытая мраком. Если тёмная энергия постоянна в течение долгого времени, нас, вероятно, ждёт «большое замораживание»: Вселенная продолжит расширяться всё быстрее, и в конечном счёте галактики настолько удалятся друг от друга, что нынешняя пустота космоса покажется детской забавой.

Если тёмная энергия возрастает, расширение станет настолько быстрым, что увеличится пространство не только между галактиками, но и между звёздами, то есть сами галактики будут разорваны; этот вариант называется «большим разрывом».

Ещё один сценарий состоит в том, что тёмная энергия уменьшится и уже не сможет противодействовать силе тяжести, что заставит Вселенную свернуться («большое сжатие»).

Ну а суть в том, что, как бы ни разворачивались события, мы обречены. До этого ещё, впрочем, миллиарды или даже триллионы лет - достаточно, чтобы разобраться в том, как же всё-таки погибнет Вселенная.

Квантовая гравитация

Несмотря на активные исследования, теория квантовой гравитации пока не построена. Основная трудность в её построении заключается в том, что две физические теории, которые она пытается связать воедино, - квантовая механика и общая теория относительности (ОТО) - опираются на разные наборы принципов.

Так, квантовая механика формулируется как теория, описывающая временну́ю эволюцию физических систем (например атомов или элементарных частиц) на фоне внешнего пространства-времени .

В ОТО внешнего пространства-времени нет - оно само является динамической переменной теории, зависящей от характеристик находящихся в нём классических систем.

При переходе к квантовой гравитации, как минимум, нужно заменить системы на квантовые (то есть произвести квантование). Возникающая связь требует какого-то квантования геометрии самого пространства-времени, причём физический смысл такого квантования абсолютно неясен и сколь-либо успешная непротиворечивая попытка его проведения отсутствует.

Даже попытка провести квантование линеаризованной классической теории гравитации (ОТО) наталкивается на многочисленные технические трудности - квантовая гравитация оказывается неперенормируемой теорией вследствие того, что гравитационная постоянная является размерной величиной.

Ситуация усугубляется тем, что прямые эксперименты в области квантовой гравитации, из-за слабости самих гравитационных взаимодействий, недоступны современным технологиям. В связи с этим в поиске правильной формулировки квантовой гравитации приходится пока опираться только на теоретические выкладки.

Бозон Хиггса не имеет абсолютно никакого смысла. Почему же он существует?

Бозон Хиггса объясняет, как все остальные частицы приобретают массу, но в то же время поднимает множество новых вопросов. Например, почему бозон Хиггса взаимодействует со всеми частицами по-разному? Так, t-кварк взаимодействует с ним сильнее, чем электрон, из-за чего масса первого намного выше, чем у второго.

Кроме того, бозон Хиггса - первая элементарная частица с нулевым спином.

«Перед нами совершенно новая область физики элементарных частиц, - говорит учёный Ричард Руис  - Мы понятия не имеем, какова её природа».

Излучение Хокинга

Производят ли чёрные дыры тепловое излучение, как это предсказывает теория? Содержит ли это излучение информацию об их внутренней структуре или нет, как следует из оригинального расчета Хокинга?

Почему случилось так, что Вселенная состоит из материи, а не антиматерии?

Антиматерия - та же материя: она обладает точно такими же свойствами, как вещество, из которого состоят планеты, звёзды, галактики.

Отличие только одно - заряд. Согласно современным представлениям, в новорождённой Вселенной того и другого было поровну. Вскоре после Большого взрыва материя и антиматерия аннигилировали (прореагировали с взаимным уничтожением и возникновением других частиц друг друга).

Спрашивается, как так вышло, что некоторое количество материи всё-таки осталось? Почему именно материя добилась успеха, а антивещество проиграло «перетягивание каната»?

Чтобы объяснить это неравенство, учёные усердно ищут примеры нарушения CP-инвариантности, то есть процессов, при которых частицы предпочитают распадаться с образованием материи, но не антиматерии.

«Прежде всего хотелось бы понять, различаются ли нейтринные осцилляции (превращение нейтрино в антинейтрино) между нейтрино и антинейтрино, - говорит поделившаяся вопросом Алисия Мэрино из Колорадского университета. - Ничего подобного до сих пор не наблюдалось, но мы надеемся на следующее поколение экспериментов».

Теория всего

Существует ли теория, которая объясняет значения всех фундаментальных физических констант? Существует ли теория, которая объясняет, почему законы физики таковы, как они есть?

Для обозначения теории, которая бы объединила все четыре фундаментальные взаимодействия в природе.

В течение двадцатого века было предложено множество «теорий всего», но ни одна из них не смогла пройти экспериментальную проверку, или существуют значительные затруднения в организации экспериментальной проверки для некоторых из кандидатов.

Бонус: Шаровая молния

Какова природа этого явления? Является ли шаровая молния самостоятельным объектом или подпитывается энергией извне? Все ли шаровые молнии имеют одну и ту же природу или существуют разные их типы?

Шаровая молния - светящийся плавающий в воздухе огненный шар, уникально редкое природное явление.

Единой физической теории возникновения и протекания этого явления к настоящему времени не представлено, также существуют научные теории, которые сводят феномен к галлюцинациям.

Существуют около 400 теорий, объясняющих явление, но ни одна из них не получила абсолютного признания в академической среде. В лабораторных условиях похожие, но кратковременные явления удалось получить несколькими разными способами, так что вопрос о природе шаровой молнии остаётся открытым. По состоянию на конец XX века не было создано ни одного опытного стенда, на котором это природное явление искусственно воспроизводилось бы в соответствии с описаниями очевидцев шаровой молнии.

Широко распространено мнение, что шаровая молния - явление электрического происхождения, естественной природы, то есть представляет собой особого вида молнию, существующую продолжительное время и имеющую форму шара, способного перемещаться по непредсказуемой, иногда удивительной для очевидцев траектории.

Традиционно достоверность многих свидетельств очевидцев шаровой молнии остаётся под сомнением, в том числе:

  • сам факт наблюдения хоть какого-то явления;
  • факт наблюдения именно шаровой молнии, а не какого-то другого явления;
  • отдельные подробности явления, приводимые в свидетельстве очевидца.

Сомнения в достоверности многих свидетельств осложняют изучение явления, а также создают почву для появления разных спекулятивно-сенсационных материалов, якобы связанных с этим явлением.

По материалам: несколько десятков статей из

Экология жизни. Помимо стандартных логических задач вроде «если дерево падает в лесу и никто не слышит, издает ли оно звук?», бесчисленные загадки

Помимо стандартных логических задач вроде «если дерево падает в лесу и никто не слышит, издает ли оно звук?», бесчисленные загадки продолжают волновать умы людей, занятых во всех дисциплинах современной науки и гуманитарных науках.

Вопросы вроде «существует ли универсальное определение «слова»?», «существует ли цвет физически или проявляется только у нас в умах?» и «какова вероятность, что солнце встанет завтра?» не дают людям спать. Мы собрали эти вопросы во всех сферах: медицине, физике, биологии, философии и математике, и решили задать их вам. Сможете ответить?

Почему клетки совершают самоубийство?

Биохимическое событие, известное как апоптоз, иногда называют «запрограммированной смертью клетки» или «клеточным суицидом». По причинам, которые наука в полной мере не осознает, клетки обладают возможностью «решить умереть» весьма организованным и ожидаемым образом, который полностью отличается от некроза (клеточной смерти, вызванной болезнью или травмой). Порядка 50-80 миллиардов клеток умирают в результате запрограммированной смерти клеток в человеческом организме каждый день, но механизм, который за ними стоит, и даже само это намерение непонятны в полной мере.

С одной стороны, слишком много запрограммированных смертей клеток приводит к атрофии мышц и к мышечной слабости, с другой же - отсутствие должного апоптоза позволяет клеткам пролиферировать, что может привести к раку. Общая концепция апоптоза была впервые описана немецким ученым Карлом Фогтом в 1842 году. С тех пор в понимании этого процесса был достигнут нехилый прогресс, но полноценного объяснения ему так и нет.

Вычислительная теория сознания

Некоторые ученые приравнивают деятельность ума к способу, которым компьютер обрабатывает информацию. Таким образом, в середине 60-х годов была разработана вычислительная теория сознания, и человек начал бороться с машиной всерьез. Проще говоря, представьте, что ваш мозг - это компьютер, а сознание - операционная система, которая им управляет.

Если погрузиться в контекст информатики, аналогия будет простой: в теории, программы выдают данные, основанные на серии входной информации (внешние раздражители, взгляд, звук и т. д.) и памяти (которую можно одновременно посчитать физическим жестким диском и нашей психологической памятью). Программы управляются алгоритмами, которые имеют конечное число шагов, повторяющихся в соответствии с различными вводными. Как и мозг, компьютер должен делать репрезентации того, что не может физически рассчитать - и это один из сильнейших аргументов в пользу этой теории.

Тем не менее вычислительная теория отличается от репрезентативной теории сознания тем, что не все состояния являются репрезентативными (вроде депрессии), а значит, и не смогут отвечать на воздействие компьютерного характера. Но эта проблема философская: вычислительная теория сознания работает отлично, пока речь не заходит о «перепрограммировании» мозгов, которые в депрессии. Мы не можем сбросить себя до заводских настроек.

Сложная проблема сознания

В философских диалогах «сознание» определяется как «квалиа» и проблема квалиа будет преследовать человечество, наверное, всегда. Квалиа описывает отдельные проявления субъективного сознательного опыта - например, головную боль. Мы все испытывали эту боль, но нет никакого способа измерить, испытывали ли мы одинаковую головную боль, и вообще, был ли этот опыт единым, ведь опыт боли основан на нашем восприятии ее.

Хотя было проделано множество научных попыток определить сознание, никто так и не разработал общепринятую теорию. Некоторые философы подвергали сомнению саму возможность этого.

Проблема Гетье

Проблема Гетье звучит так: «Является ли обоснованное истинное убеждение знанием?». Эта логическая головоломка входит в число самых неприятных, потому что требует от нас задуматься о том, является ли истина универсальной константой. Также она поднимает массу мысленных экспериментов и философских аргументов, в том числе и «обоснованное истинное убеждение»:

Субъект А знает, что предложение Б истинно тогда и только тогда, если:

Б является истиной,

и А считает, что Б является истиной,

и А убежден, что вера в истинность Б обоснована.

Критики проблем вроде Гетье считают, что невозможно обосновать что-то, что не является истиной (поскольку «истина» считается понятием, которое возводит аргумент в незыблемый статус). Сложно определить не только что для кого-то значит истинность, но и что значит вера в то, что это так. И это серьезно повлияло на все, от криминалистики до медицины.

Все цвета - у нас в голове?

Одним из самых сложных в человеческом опыте остается восприятие цвета: действительно ли физические объекты в нашем мире обладают цветом, который мы распознаем и обрабатываем, или же процесс наделения цветом происходит исключительно у нас в головах?

Мы знаем, что существование цветов обязано разным длинам волн, но когда дело доходит до нашего восприятия цвета, нашей общей номенклатуры и простого факта, что наши головы, вероятно, взорвутся, если мы вдруг встретимся с никогда не виданным доселе цветом в нашей универсальной палитре, эта идея продолжает удивлять ученых, философов и всех остальных.

Что такое темная материя?

Астрофизики знают, чем темная материя не является, но это определение их совсем не устраивает: хотя мы не можем видеть ее даже с помощью самых мощных телескопов, мы знаем, что во Вселенной ее больше, чем обычной материи. Она не поглощает и не излучает свет, но разница в гравитационных эффектах крупных тел (планет и т. п.) навела ученых на мысль, что что-то невидимое играет роль в их движении.

Теория, впервые предложенная в 1932 году, сводилась по большей части к проблеме «недостающей массы». Существование черной материи остается недоказанным, но научное сообщество вынуждено принимать ее существование как факт, чем бы она ни была.

Проблема восхода солнца

Какова вероятность того, что завтра взойдет солнце? Философы и статистики задаются этим вопросом тысячелетия, пытаясь вывести неопровержимую формулу для этого ежедневного события. Этот вопрос предназначен для демонстрации ограничений теории вероятности. Трудность возникает, когда мы начинаем задумываться о том, что есть много различий между предварительным знанием одного человека, предварительным знанием человечества и предварительным знанием Вселенной того, встанет ли солнце.

Если p - это долгосрочная частота восходов солнца, и к p применяется равномерное распределение вероятностей, тогда величина p увеличивается с каждым днем, когда солнце на самом деле встает и мы видим (личность, человечество, Вселенная), что это происходит.

137 элемент

Названный в честь Ричарда Фейнмана, предлагаемый окончательный элемент периодической таблицы Менделеева «фейнманиум» представляет собой теоретический элемент, который может стать последним возможным элементом; чтобы выйти за пределы №137, элементам придется двигаться быстрее скорости света. Выдвигались предположения, что элементам выше №124 не будет хватать стабильности на существование в течение более нескольких наносекунд, а значит такой элемент, как фейнманиум, будет уничтожаться в процессе спонтанного деления, прежде чем его можно будет изучить.

Что еще более интересно, так это то, что номер 137 был не просто так выбран в честь Фейнмана; он считал, что этот номер обладает глубоким смыслом, так как «1/137 = почти точно значению так называемой константы тонкой структуры, безразмерной величины, которая определяет силу электромагнитного взаимодействия».

Большим вопросом остается, сможет ли такой элемент существовать за пределами сугубо теоретического и произойдет ли это на нашем веку?

Существует ли универсальное определение слова «слово»?

В лингвистике слово - это небольшое высказывание, которое может обладать каким-либо смыслом: в практическом или буквальном смысле. Морфема, которая чуть меньше, но с помощью которой все еще можно сообщать смысл, в отличие от слова, не может оставаться особняком. Вы можете сказать «-ство» и понять, что это значит, но едва ли разговор из таких обрезков будет иметь смысл.

Каждый язык в мире имеет свой собственный лексикон, который делится на лексемы, являющиеся формами отдельных слов. Лексемы чрезвычайно важны для языка. Но опять же, в более общем смысле, мельчайшей единицей речи остается слово, которое может стоять особняком и будет иметь смысл; правда, остаются проблемы с определением, к примеру, частиц, предлогов и союзов, поскольку они особым смыслом вне контекста не обладают, хотя и остаются словами в общем смысле.

Паранормальные способности за миллион долларов

С момента начала в 1964 году порядка 1000 человек приняли участие в «Паранормальном испытании» (Paranormal Challenge), но никто так и не взял приз. Образовательный фонд Джеймса Рэнди предлагает миллион долларов любому, кто сможет научно подтвердить сверхъестественные или паранормальные способности. На протяжении многих лет масса медиумов пытались проявить себя, но им категорически отказывали. Чтобы все удалось, претендент должен получить одобрение от учебного института или другой организации соответствующего уровня.

Хотя ни один из 1000 претендентов не смог доказать наличие наблюдаемых психических паранормальных способностей, которые можно было засвидетельствовать научно, Рэнди сказал, что «очень немногие» из конкурсантов посчитали, что их провал был обусловлен отсутствием талантов. По большей части все сводили неудачи к нервозности.

Проблема в том, что этот конкурс едва ли кто-нибудь когда-нибудь выиграет. Если кто-то будет обладать сверхъестественными способностями, это значит, что их нельзя объяснить естественным научным подходом. Улавливаете?опубликовано





Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта