Главная » Дом » За что отвечает кора. Внутреннее устройство коры головного мозга. Интересные факты о коре головного мозга

За что отвечает кора. Внутреннее устройство коры головного мозга. Интересные факты о коре головного мозга

Кора – наиболее сложный высокодифференцированный отдел ЦНС. Он делится по своему морфологическому на 6 слоев, которые отличаются по содержанию нейронов и положению нервный переменных. 3 типа нейронов – пирамидные, звездчатые (астроциты), веретенообразные, которые связаны между собой.

Основная роль в афферентной функции и процессах переключения возбуждения принадлежит астроцитам. Они имеют короткие, но сильно ветвящиеся аксоны, которые не выходят за пределы серого вещества. Более короткие и более ветвящиеся дендриты. Они участвуют в процессах восприятия, раздражения и объединении деятельности пирамидных нейронов.

Слои коры:

    Молекулярный (зональный)

    Наружный зернистый

    Малых и средних пирамид

    Внутренний зернистый

    Ганглиозный (слой больших пирамид)

    Слой полиморфных клеток

Пирамидные нейроны осуществляют эфферентную функцию коры и связывают между собой удаленные друг от друга нейроны участков коры. К пирамидным нейронам относятся пирамиды Беца (гигантские пирамидные), они находятся в передней центральной извилине. Самые длинные отростки аксонов у пирамид Беца. Характерная особенность пирамидных клеток – перпендикулярная ориентация. Вниз отходит аксон, а вверх – дендриты.

На каждом из нейронов может насчитываться от 2 до 5 тыс. синаптических контактов. Это говорит о том, что управляющие клетки находятся под большим влиянием других неуронов других зон, что позволяет координировать моторную реакцию в ответ на воздействие внешней среды.

Веретенообразные клетки характерны для 2 и 4 слоев. У человека эти слои наиболее широко выражены. Они выполняют ассоциативную функцию, связывают между собой зоны коры при решении различных задач.

Структурной организующей единицей является кортикальная колонка – вертикальный связанный между собой модуль, все клетки которого между собой функционально связаны и образуют общее рецепторное поле. Она имеет несколько входов и несколько выходов. Колонки, имеющие сходные функции объединяются в макроколонки.

КБП развивается сразу после рождения, и до 18 лет идет рост числа элементарных связей в КБП.

Величина клеток, которых содержится в коре, толщина слоев, их связь между собой определяют цитоархитектонику коры.

Бродман и Фог.

Цитоархитектоническое поле – участок коры, который отличается от других, но похож внутри. Каждое поле имеет свою специфику. В настоящее время выделяют 52 основных поля, но часть полей у человека отсутствует. У человека выделяют области, которые имеют соответствующие поля.

Кора несет на себе отпечаток филогенетического развития. Она подразделяется на 4 основных типа, которые отличаются между собой дифференцированностью нейронных слоев: палеокортекс – древняя кора, имеющая отношение к обонятельным функциям: обонятельная луковица, обнятельный тракт, обонятельная борозда; археокортекс – старая кора, включает участки медиальной поверхности вокруг мозлистого тела: поясная извилина, гиппокамп, миндалевидное тело; мезокортекс – промежутояная кора: наружно-нижняя поверхность островка; неокортекс – новая кора, только у млекопитающих, 85 % всей коры КБП, лежит на конвекситальной и латеральной поверхностях.

Палеокорткс и археокортекс – лимбическая система.

Связи коры с подкорковыми образованиями осуществляются несколькими типами проводящих путей:

    Ассоциативные волокна – только внутри 1 полушария, связывают соседние извилины в виде дугообразных пучков, либо соседние доли. их назначение – обеспечение целостной работы одного полушария при анализе и синтезе разномодальных возбуждений.

    Проекционные волокна – связывают периферические рецепторы с КГМ. Они имеют разный вход, как правило, перекрещиваются, все они перевлючаются в таламусе. Задача – передача мономодального импульса к соответствующей первичной зоне коры.

    Интегративно-пусковые волокна (интегративные пути) – начинаются от двигательных зон. Это нисходящие эфферентные пути, имеют перекрестия на различных уровнях, зона приложения – мышечные команды.

    Коммисуральные волокна – обеспечивают целостную совместную работу 2 полушарий. Располагаются в мозолистом теле, зрительном перекресте, таламусе и на уровне 4-холомия. Основная задача – соединение равноименных извилин различных полушарий.

    Лимбико-ретикулярные волокна – связывают энергорегулирующие зоны продолговатого мозга с КБП. Задача – поддержание общего активного/пассивного фона мозга.

2 системы управления организмом: ретикулярная формация и лимбическая система. Эти системы являются модулирующими – усиливают/ослабляют импульсы. Этот блок имеет несколько уровней реагирования: физиологический, психологический, поведенческий.

Кора больших полушарий головного мозга представляет собой наиболее молодое образование центральной нервной системы.Деятельность коры больших полушарий основана на принципе условного рефлекса, поэтому ее называют условно-рефлекторной. Она осуществляет быструю связь с внешней средой и приспособление организма к изменяющимся условиям внешней среды.

Глубокие борозды делят каждое полушарие большого мозга на лобную, височную, теменную, затылочную доли и островок . Островок расположен в глубине сильвиевой борозды и закрыт сверху частями лобной и теменной долей мозга.

Кора большого мозга делится на древнюю (архиокортекс ), старую (палеокортекс ) и новую (неокортекс). Древняя кора, наряду с другими функциями, имеет отношение к обонянию и обеспечению взаимодействия систем мозга. Старая кора включает поясную извилину, гиппокамп. У новой коры наибольшее развитие величины, дифференциации функций отмечается у человека. Толщина новой коры 3-4 мм. Общая площадь коры взрослого человека 1700-2000 см 2 , а число нейронов — 14 млрд (если их расположить в ряд, то образуется цепь протяженностью 1000 км) — постепенно истощается и к старости составляет 10 млрд (более 700 км). В составе коры имеются пирамидные, звездчатые и веретенообразные нейроны.

Пирамидные нейроны имеют разную величину, их дендриты несут большое количество шипиков: аксон пирамидного нейрона идет через белое вещество в другие зоны коры или структуры ЦНС.

Звездчатые нейроны имеют короткие, хорошо ветвящиеся дендриты и короткий аксон, обеспечивающий связи нейронов в пределах самой коры большого мозга.

Веретенообразные нейроны обеспечивают вертикальные или горизонтальные взаимосвязи нейронов разных слоев коры.

Строение коры больших полушарий

В коре содержится большое количество глиальных клеток, выполняющих опорную, обменную, секреторную, трофическую функции.

Наружная поверхность коры разделена на четыре доли: лобную, теменную, затылочную и височную. Каждая доля имеет свои проекционные и ассоциативные области.

Кора большого мозга имеет шестислойное строение (рис. 1-1):

  • молекулярный слой (1) светлый, состоит из нервных волокон и имеет небольшое количество нервных клеток;
  • наружный зернистый слой (2) состоит из звездчатых клеток, определяющих длительность циркулирования возбуждения в коре головного мозга, т.е. имеющих отношение к памяти;
  • слой пирамидных меток (3) формируется из пирамидных клеток малой величины и вместе со слоем 2 обеспечивает корко-корко- вые связи различных извилин мозга;
  • внутренний зернистый слой (4) состоит из звездчатых клеток, здесь заканчиваются специфические таламокортикальные пути, т.е. пути, начинающиеся от рецепторов-анализаторов.
  • внутренний пирамидный слой (5) состоит из гигантских пирамидных клеток, которые являются выходными нейронами, аксоны их идут в ствол мозга и спинной мозг;
  • слой полиморфных клеток (6) состоит из неоднородных по величине клеток треугольной и веретенообразной формы, которые образуют кортикоталамические пути.

I — афферентные пути из таламуса: СТА — специфические таламические афференты; НТА — неспецифические таламические афференты; ЭМВ — эфферентные моторные волокна. Цифрами обозначены слои коры; II — пирамидный нейрон и распределение окончаний на нем: А — неспецифические афферентные волокна из ретикулярной формации и ; Б — возвратные коллатерали от аксонов пирамидных нейронов; В — комиссуральные волокна из зеркальных клеток противоположного полушария; Г — специфические афферентные волокна из сенсорных ядер таламуса

Рис. 1-1. Связи коры больших полушарий.

Клеточный состав коры по разнообразию морфологии, функций, формам связи не имеет себе равных в других отделах ЦНС. Нейронный состав, распределение по слоям в разных областях коры различны. Это позволило выделить в мозге человека 53 цитоархитектонических поля. Разделение коры большого мозга на цитоархитектонические поля более четко формируется по мере совершенствования ее функции в филогенезе.

Функциональной единицей коры является вертикальная колонка диаметром около 500 мкм. Колонка - зона распределения разветвлений одного восходящего (афферентного) таламокортикального волокна. Каждая колонка содержит до 1000 нейронных ансамблей. Возбуждение одной колонки тормозит соседние колонки.

Восходящий путь проходит через все корковые слои (специфический путь). Неспецифический путь также проходит через все корковые слои. Белое вещество полушарий расположено между корой и базальными ганглиями. Оно состоит из большого количества волокон, идущих в разных направлениях. Это проводящие пути конечного мозга. Различают три вида путей.

  • проекционный — связывает кору с промежуточным мозгом и другими отделами ЦНС. Это восходящие и нисходящие пути;
  • комиссуральный - его волокна входят в состав мозговых комиссур, которые соединяют соответствующие участки левого и правого полушарий. Входят в состав мозолистого тела;
  • ассоциативный - связывает участки коры одного и того же полушария.

Зоны коры больших полушарий

По особенностям клеточного состава поверхность коры подразделяют на структурные единицы следующего порядка: зоны, области, подобласти, поля.

Зоны коры головного мозга разделяются на первичные, вторичные и третичные проекционные зоны. В них расположены специализированные нервные клетки, к которым поступают импульсы от определенных рецепторов (слуховых, зрительных и т.д.). Вторичные зоны представляют собой периферические отделы ядер анализаторов. Третичные зоны получают обработанную информацию от первичных и вторичных зон коры больших полушарий и играют важную роль в регуляции условных рефлексов.

В сером веществе коры больших полушарий различают сенсорные, моторные и ассоциативные зоны:

  • сенсорные зоны коры больших полушарий - участки коры, в которых располагаются центральные отделы анализаторов:
    зрительная зона — затылочная доля коры больших полушарий;
    слуховая зона — височная доля коры больших полушарий;
    зона вкусовых ощущений — теменная доля коры больших полушарий;
    зона обонятельных ощущений — гиппокамп и височная доля коры больших полушарий.

Соматосенсорная зона находится в задней центральной извилине, сюда приходят нервные импульсы от проприорецепторов мышц, сухожилий, суставов и импульсы от температурных, тактильных и других рецепторов кожи;

  • моторные зоны коры больших полушарии - участки коры, при раздражении которых появляются двигательные реакции. Располагаются в передней центральной извилине. При ее поражении наблюдаются значительные нарушения движения. Пути, по которым импульсы идут от больших полушарий к мышцам, образуют перекрест, поэтому при раздражении моторной зоны правой стороны коры возникает сокращение мышц левой стороны тела;
  • ассоциативные зоны - отделы коры, находящиеся рядом с сенсорными зонами. Нервные импульсы, поступающие в сенсорные зоны, приводят к возбуждению ассоциативных зон. Особенностью их является то, что возбуждение может возникать при поступлении импульсов от различных рецепторов. Разрушение ассоциативных зон приводит к серьезным нарушениям обучения и памяти.

Речевая функция связана с сенсорными и двигательными зонами. Двигательный центр речи (центр Брока) находится в нижней части левой лобной доли, при его разрушении нарушается речевая артикуляция; при этом больной понимает речь, но сам говорить не может.

Слуховой центр речи (центр Вернике) расположен в левой височной доле коры больших полушарий, при его разрушении наступает словесная глухота: больной может говорить, излагать устно свои мысли, но не понимает чужой речи; слух сохранен, но больной не узнает слов, нарушается письменная речь.

Речевые функции, связанные с письменной речью — чтение, письмо, — регулируются зрительным центром речи, расположенным на границе теменной, височной и затылочной долей коры головного мозга. Его поражение приводит к невозможности чтения и письма.

В височной доле находится центр, отвечающий за запоминание слое. Больной с поражением этого участка не помнит названия предметов, ему необходимо подсказывать нужные слова. Забыв название предмета, больной помнит его назначение, свойства, поэтому долго описывает их качества, рассказывает, что делают с этим предметом, но назвать его не может. Например, вместо слова «галстук» больной говорит: «это то, что надевают на шею и завязывают специальным узлом, чтобы было красиво, когда идут в гости».

Функции лобной доли:

  • управление врожденными поведенческими реакциями при помощи накопленного опыта;
  • согласование внешних и внутренних мотиваций поведения;
  • разработка стратегии поведения и программы действия;
  • мыслительные особенности личности.

Состав коры больших полушарий

Кора больших полушарий головного мозга является высшей структурой ЦНС и состоит из нервных клеток, их отростков и нейроглии. В составе коры имеются звездчатые, веретенообразные и пирамидные нейроны. Благодаря наличию складок кора имеет большую поверхность. Выделяют древнюю кору (архикортекс) и новую кору (неокортекс). Кора состоит из шести слоев (рис. 2).

Рис. 2. Кора больших полушарий головного мозга

Верхний молекулярный слой образован в основном дендритами пирамидных клеток нижележащих слоев и аксонами неспецифических ядер таламуса. На этих дендритах формируют синапсы афферентные волокна, приходящие от ассоциативных и неспецифических ядер таламуса.

Наружный гранулярный слой образован мелкими звездчатыми клетками и частично малыми пирамидными клетками. Волокна клеток этого слоя расположены преимущественно вдоль поверхности коры, формируя кортикокортикальные связи.

Слой пирамидных клеток малой величины.

Внутренний гранулярный слой, образованный звездчатыми клетками. В нем заканчиваются афферентные таламокортикальные волокна, начинающиеся от рецепторов анализаторов.

Внутренний пирамидный слой состоит из крупных пирамидных клеток, участвующих в регуляции сложных форм движения.

Мультиформный слой состоит из верстеновидных клеток, образующих кортикоталамические пути.

По функциональной значимости нейроны коры подразделяют на сенсорные , воспринимающие афферентные импульсы от ядер таламуса и рецепторов сенсорных систем; моторные , посылающие импульсы к подкорковым ядрам, промежуточному, среднему, продолговатому мозгу, мозжечку, ретикулярной формации и спинному мозгу; и промежуточные , осуществляющие связь между нейронами коры больших полушарий. Нейроны коры больших полушарий находятся в состоянии постоянного возбуждения, не исчезающего и во время сна.

В кору больших полушарий, к сенсорным нейронам поступают импульсы от всех рецепторов организма через ядра таламуса. И каждый орган имеет свою проекцию или корковое представительство, расположенное в определенных областях больших полушарий.

В коре больших полушарий имеется четыре чувствительные и четыре двигательные области.

Нейроны двигательной коры получают афферентную импульсацию через таламус от мышечных, суставных и кожных рецепторов. Основные эфферентные связи двигательной коры осуществляются через пирамидные и экстрапирамидные пути.

У животных наиболее развита лобная область коры и ее нейроны участвуют в обеспечении целенаправленного поведения. Если удалить эту долю коры, животное становится вялым, сонливым. В височной области локализуется участок слуховой рецепции, и сюда поступают нервные импульсы от рецепторов улитки внутреннего уха. Область зрительной рецепции находится в затылочных долях коры головного мозга.

Теменная область, внеядерная зона, играет важную роль в организации сложных форм высшей нервной деятельности. Здесь расположены рассеянные элементы зрительного и кожного анализаторов, осуществляется межанализаторный синтез.

Рядом с проекционными зонами располагаются ассоциативные зоны, которые осуществляют связь между сенсорной и двигательной зонами. Ассоциативная кора принимает участие в конвергенции различных сенсорных возбуждений, позволяющей осуществлять сложную обработку информации о внешней и внутренней среде.

В настоящее время доподлинно известно, что высшие функции нервной системы, такие как способность к осознанию сигналов, полученных из внешней среды, к мыслительной деятельности, к запоминанию и мышлению, в значительной мере обусловлены тем, как функционирует кора головного мозга. Зоны коры головного мозга мы рассмотрим в этой статье.

То, что личность осознает свои взаимоотношения с другими людьми, связано с возбуждением нейронных сетей. Речь идет о тех, которые находятся именно в коре. Она является структурной основой интеллекта и сознания.

Неокортекс

Порядка 14 млрд нейронов имеет кора головного мозга. Зоны коры головного мозга, которые будут рассмотрены ниже, функционируют благодаря им. Основная часть нейронов (около 90 %) формирует неокортекс. Он относится к соматической нервной системе, являясь его высшим интегративным отделом. Важнейшая функция неокортекса - переработка и интерпретация информации, полученной с помощью органов чувств (зрительной, соматосенсорной, вкусовой, слуховой). Важно и то, что сложными мышечными движениями управляет именно он. В неокортексе находятся центры, которые принимают участие в процессах речи, абстрактного мышления, а также хранения памяти. Основная часть процессов, происходящих в нем, представляет собой нейрофизиологическую основу нашего сознания.

Палеокортекс

Палеокортекс - другой большой и важный отдел, который имеет кора головного мозга. Зоны коры головного мозга, относящиеся к нему, также очень важны. Эта часть имеет более простую структуру по сравнению с неокортексом. Процессы, протекающие здесь, в сознании отражаются не всегда. В палеокортексе находятся высшие вегетативные центры.

Связь коры с нижележащими отделами мозга

Следует отметить связь коры с нижележащими отделами нашего мозга (таламусом, мостом и Она осуществляется с помощью крупных пучков волокон, которые формируют внутреннюю капсулу. Эти пучки волокон представляют собой широкие пласты, сложенные из белого вещества. В них содержится множество нервных волокон (миллионы). Часть из этих волокон (аксоны нейронов таламуса) обеспечивает передачу к коре нервных сигналов. Другая часть, а именно аксоны корковых нейронов, служит для передачи их к нервным центрам, расположенным ниже.

Строение коры головного мозга

Знаете ли вы, какой отдел мозга является самым большим? Некоторые из вас, вероятно, догадались, о чем идет речь. Это кора головного мозга. Зоны коры головного мозга - это лишь один тип частей, которые выделяются в ней. Так, она поделена на правое и левое полушарие. Они соединены друг с другом пучками белого вещества, которое формирует Основная функция мозолистого тела заключается в обеспечении координации деятельности двух полушарий.

Зоны коры головного мозга по расположению

Хотя в коре головного мозга есть множество складок, в целом расположение важнейших борозд и извилин характеризуется постоянством. Поэтому главные из них служат ориентиром при делении областей коры. Ее наружная поверхность разделена на 4 доли тремя бороздами. Эти доли (зоны) - височная, затылочная, теменная и лобная. Хотя они выделяются по расположению, у каждой из них есть свои специфические функции.

Височная зона коры головного мозга представляет собой центр, где находится корковый слой слухового анализатора. В случае его повреждения возникает глухота. Слуховая зона коры головного мозга, кроме того, имеет центр речи Вернике. В случае его повреждения пропадает способность понимать устную речь. Она начинает восприниматься как шум. Кроме того, в имеются нейронные центры, относящиеся к вестибулярному аппарату. Чувство равновесия нарушается в случае их повреждения.

Зоны речи коры головного мозга сосредоточены в лобной доле. Именно здесь находится речедвигательный центр. В случае если в он будет поврежден, пропадет способность менять интонацию и тембр речи. Она становится монотонной. Если же повреждение относится к левому полушарию, где также имеются речевые зоны коры головного мозга, пропадает артикуляция. Исчезает также способность к пению и членораздельной речи.

Зрительная зона коры головного мозга соответствует затылочной доле. Здесь находится отдел, который отвечает за наше зрение как таковое. Окружающий мир мы воспринимаем именно мозгом, а не глазами. За зрение отвечает как раз затылочная часть. Поэтому в случае ее повреждения развивается полная или частичная слепота.

Теменная доля также имеет свои специфические функции. Она отвечает за анализ информации, касающейся общей чувствительности: тактильной, температурной, болевой. В случае ее повреждения теряется способность распознавать предметы на ощупь, а также некоторые другие способности.

Двигательная зона

Хотелось бы отдельно поговорить о ней. Дело в том, что двигательная зона коры головного мозга не соотносится с долями, о которых мы рассказали выше. Она представляет собой часть коры, которая содержит нисходящие прямые связи со спинным мозгом, точнее, с его мотонейронами. Так называются нейроны, которые непосредственно управляют работой мышц.

Главная двигательная зона коры головного мозга расположена в По многим своим аспектам эта извилина является зеркальным отображением другой зоны, сенсорной. Наблюдается контрлатеральная иннервация. Другими словами, иннервация происходит в отношении мышц, расположенных на противоположной стороне тела. Исключением является лицевая область, в которой действует двусторонний контроль мышц челюсти и нижней части лица.

Еще одна дополнительная двигательная зона коры головного мозга расположена в области, находящейся ниже основной зоны. Ученые считают, что у нее есть независимые функции, связанные с выводом двигательных импульсов. Эта двигательная зона коры головного мозга также изучалась учеными. В экспериментах, поставленных над животными, было установлено, что ее стимуляция приводит к возникновению двигательных реакций. Причем это происходит даже в том случае, если основная моторная зона коры головного мозга была перед этим разрушена. В доминантном полушарии она вовлечена в мотивацию речи и в планирование движений. Ученые считают, что ее повреждение ведет к динамической афазии.

Зоны коры головного мозга по функциям и строению

В результате клинических наблюдений и физиологических экспериментов, осуществленных еще во второй половине 19 столетия, были установлены границы областей, в которые проецируются различные рецепторные поверхности. Среди последних выделяют как направленные на внешний мир (кожной чувствительности, слуха, зрения), так и те, которые заложены в самих органах движения (кинетический, или двигательный анализатор).

Затылочная область - зона зрительного анализатора (поля с 17 по 19), верхняя височная - слухового анализатора (поля 22, 41 и 42), постцентральная область - кожно-кинестетического анализатора (поля 1, 2 и 3).

Корковые представители различных анализаторов по функциям и строению делятся на следующие 3 зоны коры больших полушарий головного мозга: первичную, вторичную и третичную. На раннем периоде, во время развития эмбриона, закладываются именно первичные, которые характеризуются простой цитоархитектоникой. В последнюю очередь развиваются третичные. Они обладают самым сложным строением. Промежуточное положение с этой точки зрения занимают вторичные зоны полушарий коры головного мозга. Предлагаем вам подробнее рассмотреть функции и строение каждой из них, а также их связь с отделами мозга, расположенными ниже, в частности, с таламусом.

Центральные поля

Ученые за долгие годы изучения накопили значительный опыт клинических исследований. В результате наблюдений было установлено, в частности, что повреждения тех или иных полей в составе корковых представителей анализаторов сказываются на общей клинической картине далеко не равнозначно. Среди остальных полей в этом отношении выделяется одно, которое в ядерной зоне занимает центральное положение. Оно называется первичным, или центральным. Им является поле под номером 17 в зрительной зоне, в слуховой - под номером 41, а в кинестетической - 3. Их повреждение ведет к очень серьезным последствиям. Теряется способность воспринимать или осуществлять самые тонкие дифференцировки раздражителей соответствующих анализаторов.

Первичные зоны

В первичной зоне наиболее развит комплекс нейронов, который приспособлен для обеспечения корково-подкорковых двухсторонних связей. Он самым коротким и прямым путем соединяет кору с тем или иным органом чувств. Из-за этого первичные зоны коры головного мозга могут достаточно подробно выделять раздражители.

Важная общая черта функциональной и структурной организации этих областей - это то, что у всех у них имеется четкая соматотопическая проекция. Это значит, что отдельные точки периферии (сетчатки глаза, кожной поверхности, улитки внутреннего уха, скелетной мускулатуры) проецируются в соответствующие, строго разграниченные точки, находящиеся в первичной зоне коры соответствующего анализатора. По этой причине они стали называться проекционными.

Вторичные зоны

Иначе их называют периферическими, и это не случайно. Они находятся в ядерных участках коры, в их периферических отделах. Вторичные зоны отличаются от первичных, или центральных, по физиологическим проявлениям, нейронной организации и особенности архитектоники.

Какие же эффекты наблюдаются при их электрическом раздражении или поражении? Эти эффекты касаются главным образом более сложных видов психических процессов. Если вторичные зоны поражены, то элементарные ощущения относительно сохранны. Расстраивается в основном способность правильно отражать взаимные соотношения и целые комплексы составных элементов различных объектов, которые нами воспринимаются. Если раздражены вторичные зоны слуховой и зрительной коры, то наблюдаются слуховые и зрительные галлюцинации, развернутые в определенной последовательности (временной и пространственной).

Данные области очень важны для реализации взаимной связи раздражителей, выделение которых происходит с помощью первичных зон. Кроме того, они играют значительную роль в интеграции функций ядерных полей различных анализаторов при объединении рецепций в сложные комплексы.

Вторичные зоны, таким образом, важны для реализации более сложных форм психических процессов, требующих координации и связанных с тщательным анализом соотношений предметных раздражителей, а также с ориентировкой во времени и в окружающем пространстве. При этом устанавливаются связи, называемые ассоционными. Афферентные импульсы, которые от рецепторов различных поверхностных органов чувств направляются в кору, достигают данных полей через множество дополнительных переключений в ассоционных ядрах таламуса (зрительного бугра). В отличие от них, афферентные импульсы, которые следуют в первичные зоны, достигают их более коротким путем через посредство реле-ядра зрительного бугра.

Что такое таламус

Волокна от таламических ядер (одного или нескольких) подходят к каждой доле полушарий нашего мозга. Зрительный бугор, или таламус, находится в переднем мозге, в его центральной области. Он состоит из множества ядер, при этом каждое из них передает импульс в строго определенный участок коры.

Все сигналы, поступающие к ней (кроме обонятельных), проходят сквозь релейные и интегративные ядра таламуса. Далее волокна идут от них к сенсорным зонам (в теменной доле - к вкусовой и соматосенсорной, в височной - к слуховой в затылочной - к зрительной). Поступают импульсы соответственно от вентро-базального комплекса, медиального и латерального ядер. Что касается моторных зон коры, они имеют связь с вентролатеральным и передним вентральным ядрами таламуса.

Десинхронизация ЭЭГ

Что будет, если человеку, который находится в состоянии покоя, внезапно предъявить какой-либо сильный раздражитель? Конечно, он сразу же насторожится и сконцентрирует на этом раздражителе свое внимание. Переходу умственной деятельности, осуществляемому от покоя к состоянию активности, соответствует замена альфа-ритма ЭЭГ на бета-ритм, а также на другие колебания, более частые. Данный переход, называемый десинхронизацией ЭЭГ, появляется в результате того, что в кору от неспецифических ядер таламуса поступают сенсорные возбуждения.

Активирующая ретикулярная система

Неспецифические ядра составляют диффузную нервную сеть, находящуюся в таламусе, в медиальных его отделах. Это передний отдел АРС (активирующей ретикулярной системы), которая регулирует возбудимость коры. Различные сенсорные сигналы могут активировать АРС. Они могут быть зрительными, вестибулярными, соматосенсорными, обонятельными и слуховыми. АРС - это канал, по которому данные сигналы передаются к поверхностным слоям коры через неспецифические ядра, расположенные в таламусе. Возбуждение АРС играет важную роль. Оно необходимо, чтобы поддерживать бодрствующее состояние. У подопытных животных, у которых эта система была разрушена, наблюдалось коматозное сноподобное состояние.

Третичные зоны

Функциональные отношения, которые прослеживаются между анализаторами, еще более сложны, чем было описано выше. Морфологически дальнейшее их усложнение выражается в том, что в процессе роста по поверхности полушария ядерных полей анализаторов эти зоны взаимно перекрываются. У корковых концов анализаторов образуются "зоны перекрытия", то есть третичные зоны. Данные формации относятся к самым сложным типам объединения деятельности кожно-кинестетического, слухового и зрительного анализаторов. Третичные зоны расположены уже за границами собственных ядерных полей. Поэтому их раздражение и повреждение не приводит к выраженным явлениям выпадения. Также и в отношении специфических функций анализатора не наблюдаются значительные эффекты.

Третичные зоны - это особые области коры. Их можно назвать собранием "рассеянных" элементов различных анализаторов. То есть это элементы, которые сами по себе уже не способны производить какие бы то ни было сложные синтезы или анализы раздражителей. Территория, которую они занимают, достаточно обширна. Она распадается на целый ряд областей. Вкратце опишем их.

Верхняя теменная область важна для интеграции движений всего тела со зрительными анализаторами, а также для формирования схемы тела. Что касается нижней теменной, то она относится к объединению отвлеченных и обобщенных форм сигнализации, связанных со сложно и тонко дифференцированными речевыми и предметными действиями, выполнение которых контролируется зрением.

Область височно-теменно-затылочная также очень важна. Она отвечает за сложные типы интеграции зрительного и слухового анализаторов с письменной и устной речью.

Отметим, что третичные зоны имеют самые сложные цепи связи по сравнению с первичными и вторичными. Двусторонние связи наблюдаются у них с комплексом ядер таламуса, связанными, в свою очередь, с реле-ядрами посредством длинной цепи внутренних связей, имеющихся непосредственно в таламусе.

На основании вышеизложенного ясно, что у человека зоны первичные, вторичные и третичные представляют собой участки коры, являющиеся высоко специализированными. Особенно нужно подчеркнуть, что 3 группы корковых зон, описанные выше, в нормально работающем мозге вместе с системами связей и переключений между собой, а также с подкорковыми образованиями функционируют как одно сложно дифференцированное целое.

Современным ученым доподлинно известно, что благодаря функционированию головного мозга возможны такие способности, как осознание сигналов, которые получены из внешней среды, мыслительная деятельность, запоминание мышления.

Способность личности осознавать собственные отношения с другими людьми непосредственно связано с процессом возбуждения нейронных сетей. Причем речь идет именно о тех нейронных сетях, которые расположены в коре. Она представляет собой структурную основу сознания и интеллекта.

В данной статье рассмотрим, как устроена кора головного мозга, зоны коры головного мозга будут подробно описаны.

Неокортекс

Кора включает в себя около четырнадцати миллиардов нейронов. Именно благодаря им осуществляется функционирование основных зон. Подавляющая часть нейронов, до девяноста процентов, формирует неокортекс. Он является частью соматической НС и ее высшим интегративным отделом. Важнейшими функциями коры головного мозга выступают восприятие, переработка, интерпретация информации, которую человек получает при помощи всевозможных органов чувств.

Помимо этого, неокортекс управляет сложными движениями системы мышц человеческого тела. В нем расположены центры, принимающие участие в процессе речи, хранении памяти, абстрактном мышлении. Большая часть процессов, которые в нем происходят, формирует нейрофизическую основу человеческого сознания.

Из каких отделов еще состоит кора головного мозга? Зоны коры головного мозга рассмотрим ниже.

Палеокортекс

Является еще одним большим и важным отделом коры. В сравнении с неокортексом у палеокортекса более простая структура. Процессы, которые здесь протекают, редко отражаются в сознании. В этом отделе коры высшие вегетативные центры локализуются.

Связь коркового слоя с другими отделами мозга

Немаловажно рассмотреть связь, которая имеется между нижележащими отделами мозга и корой больших полушарий, например, с таламусом, мостом, средним мостом, базальными ядрами. Осуществляется эта связь при помощи крупных пучков волокон, которые внутреннюю капсулу формируют. Пучки волокон представлены широкими пластами, которые сложены из белого вещества. В них расположено огромное количество нервных волокон. Некоторая часть этих волокон обеспечивает передачу нервных сигналов к коре. Остальная часть пучков передает нервные импульсы к расположенным ниже нервным центрам.

Как устроена кора головного мозга? Зоны коры головного мозга будут представлены далее.

Строение коры

Самым большим отделом мозга является его кора. Причем зоны коры являются лишь одним типом частей, выделяемых в коре. Помимо этого кора разделена на два полушария - правое и левое. Между собой полушария соединены пучками белого вещества, формирующими мозолистое тело. Его функция - обеспечивать координацию деятельности обоих полушарий.

Классификация зон коры головного мозга по их расположению

Несмотря на то что кора имеет огромное количество складок, в общем расположение ее отдельных извилин и борозд постоянно. Главные их них являются ориентиром при выделении областей коры. К таким зонам (долям) относятся - затылочная, височная, лобная, теменная. Несмотря на то что они классифицируются по месту расположения, каждая из них имеет свои собственные специфические функции.

Слуховая зона коры головного мозга

К примеру, височная зона является центром, в котором расположен корковый отдел анализатора слуха. Если происходит повреждение этого отдела коры, может возникнуть глухота. Помимо этого в слуховой зоне расположен центр речи Вернике. Если повреждению подвергается он, то человек теряется способность к восприятию устной речи. Человек воспринимает ее как простой шум. Также в височной доле есть нейронные центры, которые относятся к вестибулярному аппарату. Если повреждаются они, нарушается чувство равновесия.

Речевые зоны коры головного мозга

В лобной доле коры сосредоточены речевые зоны. Речедвигательный центр расположен тоже здесь. Если происходит его повреждение в правом полушарии, то человек теряет способность изменять тембр и интонацию собственной речи, которая становится монотонной. Если же повреждение речевого центра произошло в левом полушарии, то пропадает артикуляция, способность к членораздельной речи и пению. Из чего еще состоит кора головного мозга? Зоны коры головного мозга имеют различные функции.

Зрительные зоны

В затылочной доле располагается зрительная зона, в которой находится центр, отвечающий на наше зрение как таковое. Восприятие окружающего мира происходит именно этой частью мозга, а не глазами. Именно затылочная зона коры ответственна за зрение, и ее повреждение может привести к частичной или полной потере зрения. Зрительная зона коры головного мозга рассмотрена. Что дальше?

Для теменной доли тоже характерны свои собственные специфические функции. Именно эта зона отвечает за способность анализировать информацию, которая касается тактильной, температурной и болевой чувствительности. Если происходит повреждение теменной области, рефлексы головного мозга нарушаются. Человек не может на ощупь распознавать предметы.

Двигательная зона

Поговорим о двигательной зоне отдельно. Следует отметить, что эта зона коры никак не соотносится с долями, рассмотренными выше. Она является частью коры, содержащей прямые связи с мотонейронами в спинном мозге. Такое название носят нейроны, непосредственно управляющие деятельностью мышц тела.

Основная двигательная зона коры больших полушарий располагается в извилине, которая называется прецентральной. Эта извилина представляет собой зеркальное отображение сенсорной зоны по многим аспектам. Между ними имеется контралатеральная иннервация. Если сказать иными совами, то иннервация направлена на мышцы, которые расположены на другой стороне тела. Исключение - лицевая область, для которой характерен контроль мышц двусторонний, расположенных на челюсти, нижней части лица.

Немного ниже основной двигательной зоны расположена дополнительная зона. Ученые полагают, что она имеет независимые функции, которые связаны с процессом вывода двигательных импульсов. Дополнительная двигательная зона также изучалась специалистами. Эксперименты, которые ставились над животными, показывают, что стимуляция этой зоны провоцирует возникновение двигательных реакций. Особенностью является то, что подобные реакции возникают даже в том случае, если основная двигательная зона была изолирована или разрушена полностью. Она также вовлечена в планирование движений и в мотивацию речи в полушарии, которое является доминантным. Ученые полагают, что при повреждении дополнительной двигательной может возникнуть динамическая афазия. Рефлексы головного мозга страдают.

Классификация по строению и функциям коры головного мозга

Физиологические эксперименты и клинические испытыния, которые проводились еще в конце девятнадцатого века, позволили установить границы между областями, на которые проецируются разные рецепторные поверхности. Среди них выделяют органы чувств, которые направлены на внешний мир (кожная чувствительность, слух, зрение), рецепторы, заложенные непосредствен в органах движения (двигательный или кинетический анализаторы).

Зоны коры, в которых располагаются разнообразные анализаторы, могут быть классифицированы по строению и функциям. Так, их выделяют три. К ним относятся: первичная, вторичная, третичная зоны коры головного мозга. Развитие эмбриона предполагает закладывание только первичных зон, характеризующихся простой цитоархитектоникой. Далее происходит развитие вторичных, третичные развиваются в самую последнюю очередь. Для третичных зон характерно самое сложное строение. Рассмотрим каждую из них немного подробнее.

Центральные поля

За долгие годы клинических исследований ученым удалось накопить значительный опыт. Наблюдения позволили установить, например, что повреждения различных полей, в составе корковых отделов разных анализаторов, могут отразиться далеко не равнозначно на общей клинической картине. Если рассматривать все эти поля, то среди них можно выделить одно, которое занимает центральное положение в ядерной зоне. Такое поле носит название центрального или первичного. Находится оно одновременно в зрительной зоне, в кинестетической, в слуховой. Повреждение первичного поля влечет за собой весьма серьезные последствия. Человек не может воспринимать и осуществлять самые тонкие дифференцировки раздражителей, влияющих на соответствующие анализаторы. Как еще классифицируются участки коры головного мозга?

Первичные зоны

В первичных зонах расположен комплекс нейронов, который наиболее предрасположен к обеспечению двусторонних связей между корковыми и подкорковыми зонами. Именно этот комплекс наиболее прямым и коротким путем соединяет кору больших полушарий с разнообразными органами чувств. В связи с этим данные зоны обладают способностью очень подробной идентификации раздражителей.

Важной общей чертой функциональной и структурной организации первичных областей является то, все они имеют четкую соматическую проекцию. Это означает, что отдельные периферические точки, например, кожные поверхности, сетчатка глаза, скелетная мускулатура, улитки внутреннего уха, имеют собственную проекцию в строго ограниченные, соответствующие точки, которые находятся в первичных зонах коры соответствующих анализаторов. В связи с этим им было дано название проекционных зон коры головного мозга.

Вторичные зоны

По-другому эти зоны называются периферическими. Такое название дано им совсем не случайно. Они находятся в периферических отделах участков коры. От центральных (первичных) вторичные зоны отличаются нейронной организацией, физиологическими проявлениями и особенностями архитектоники.

Попробуем разобраться, какие эффекты возникают, если на вторичные зоны воздействует электрический раздражитель или происходит их повреждение. Главным образом возникающие эффекты касаются наиболее сложных видов процессов в психике. В том случае, если происходит повреждение вторичных зон, то элементарные ощущения остаются в относительной сохранности. В основном наблюдаются нарушения в способности правильного отражения взаимных соотношений и целых комплексов элементов, из которых состоят различные объекты, которые мы воспринимаем. К примеру, если повреждению подверглись вторичные зоны зрительной и слуховой коры, то можно наблюдать возникновение слуховых и зрительных галлюцинаций, которые разворачиваются в определенной временной и пространственной последовательности.

Вторичные области имеют значительную важность в реализации взаимных связей раздражителей, которые выделяются при помощи первичных зон коры. Помимо этого, значительную роль они играют в интеграции функций, которые осуществляют ядерные поля разных анализаторов в результате объединения в сложные комплексы рецепций.

Таким образом, вторичные зоны представляют особую важность для реализации психических процессов в более сложных формах, которые требуют координации и которые связаны с подробным анализом соотношений между предметными раздражителями. В ходе этого процесса устанавливаются специфические связи, которые носят название ассоциативных. Афферентные импульсы, поступающие в кору от рецепторов разных внешних органов чувств, достигают вторичных полей посредством множества дополнительных переключений в ассоциативном ядре таламуса, который также называется зрительным бугром. Афферентные импульсы, следующие в первичные зоны, в отличие от импульсов, следуют во вторичные зоны, достигают их путем, который короче. Он реализован посредством реле-ядра, в зрительном бугре.

Мы разобрались, за что отвечает кора головного мозга.

Что такое таламус?

От таламических ядер к каждой доле мозговых полушарий подходят волокна. Таламус является зрительным бугром, расположенным в центральной части переднего отдела мозга, состоит из большого количества ядер, каждое из которых осуществляет передачу импульса в определенные участки коры.

Все сигналы, которые поступают к коре (исключение составляют только обонятельные), проходят через релейные и интегративные ядра зрительного бугра. От ядер таламуса волокна направляются к сенсорным зонам. Вкусовая и соматосенсорная зоны расположены в теменной доле, слуховая сенсорная зона - в височной доле, зрительная - в затылочной.

Импульсы к ним поступают, соответственно, от вентро-базальных комплексов, медиальных и латеральных ядер. Моторные зоны связаны с вентеральным и вентролатеральным ядрами таламуса.

Десинхронизация ЭЭГ

Что произойдет, если на человека, находящегося в состоянии полного покоя, подействует очень сильный раздражитель? Естественно, что человек полностью сконцентрируется на данном раздражителе. Переход умственной деятельности, который осуществляется от состояния покоя к состоянию активности, отражается на ЭЭГ бета-ритмом, который замещает альфа-ритм. Колебания становятся более частыми. Такой переход называют десинхронизацией ЭЭГ, появляется он в результате поступления сенсорного возбуждения в кору от неспецифических ядер, расположенных в таламусе.

Активирующая ретикулярная система

Диффузную нервную сесть составляют неспецифические ядра. Находится эта система в медиальных отделах таламуса. Он является передним отделом активирующей ретикулярной системы, регулирующей возбудимость коры. Разнообразные сенсорные сигналы способны активировать данную систему. Сенсорные сигналы могут быть как зрительными, так и обонятельными, соматосенсорными, вестибулярными, слуховыми. Активизирующая ретикулярная система представляет собой канал, который передает к поверхностному слою коры данные сигналов через расположенные в таламусе неспецифические ядра. Возбуждение АРС необходимо для того, чтобы человек был способен поддерживать состояние бодрствования. Если в данной системе возникают нарушения, то могут наблюдаться коматозные сноподобные состояния.

Третичные зоны

Между анализаторами коры головного мозга имеются функциональные отношения, которые имеют еще более сложную структуру, чем та, что была описана выше. В процессе роста происходит взаимное перекрытие полей анализаторов. Такие зоны перекрытия, которые образуются у концов анализаторов, носят название третичных зон. Они являются самыми сложными типами объединения деятельности слухового, зрительного, кожно-кинестетического анализаторов. Расположены третичные зоны за границами собственных зон анализаторов. В связи с этим повреждение их не оказывает выраженного эффекта.

Третичные зоны представляют собой особые корковые области, в которых собраны рассеянные элементы разных анализаторов. Они занимают весьма обширную территорию, которая разделена на области.

Верхняя теменная область интегрирует движения всего тела с анализатором зрительным, формирует схему тел. Нижняя теменная область объединяет обобщенные формы сигнализации, которые связаны с дифференцированными предметными и речевыми действиями.

Не менее важной является височно-теменно-затылочная область. Отвечает она за усложненные интеграции слухового и зрительного анализаторов с устной и письменной речью.

Стоит отметить, что по сравнению с двумя первыми зонами, для третичных характерны наиболее сложные цепи взаимодействия.

Если опираться на весь изложенный выше материал, то можно сделать вывод о том, что первичные, вторичные, третичные зоны коры у человека носят высокую специализацию. Отдельно стоит подчеркнуть тот факт, что все три корковые зоны, которые мы рассматривали, в нормально функционирующем мозге совместно с системами связей и образованиями подкоркового расположения функционируют как единое дифференцированное целое.

Мы подробно рассмотрели зоны и отделы коры головного мозга.

19. Функции новой коры, функциональное значение первой и второй соматосенсорных зон, моторные зоны коры (их локализация и функциональное значение). Полифункциональность корковых областей, функциональная пластичность коры.

Соматосенсорная кора - область коры головного мозга, которая отвечает за регуляцию определенных сенсорных систем. Первая соматосенсорная зона расположена на постцентральной извилине непосредственно позади глубокой . Вторая соматосенсор­ная зона находится на верхней стенке боковой борозды, разделяющей теменную и височную доли. В этих зонах обнаружены терморецептивные и ноцицептивные (болевые) нейроны. Первая зона (I) достаточно хорошо изучена. Здесь имеют представительст­во практически все участки поверхности тела. В результате систематических исследований получена достаточно точная картина представительств тела в этой зоне коры головного мозга. В литературных и научных источниках такое представительство получило наименование “соматосенсорного гомункулуса” (подробно см. юнита 3). Соматосенсорная кора этих зон, с учетом шестислойного строения, организована в виде функциональных единиц - колонок нейронов (диаметр 0,2 - 0,5 мм), которые наделены двумя специфическими свойствами: ограниченным горизонтальным распространением афферентных нейронов и вертикальной ориентацией дендритов пирамидных клеток. Нейроны одной колонки возбуждаются рецепторами только одного типа, т.е. специфическими рецепторными окончаниями. Обработка информации в колонках и между ними осуществляется иерархично. Эфферентные связи первой зоны передают переработанную информацию к двигательной коре (обеспечивается регуляция движений по обратной связи), теменно-ассоциативной зоне (обеспечивается интеграция зрительной и тактильной информации) и к таламусу, ядрам заднего столба, спинному мозгу (обеспечивается эфферентная регуляция потока афферентной информации). Первая зона функционально обеспечивает точное тактильное различение и сознательное восприятие стимулов на поверхности тела. Вторая зона (II) изучена меньше и она занимает значительно меньше места. Филогенетически вторая зона старше первой и участвует практически во всех соматосенсорных процессах. Рецептивные поля нейронных колонок второй зоны находятся на обеих сторонах тела, а их проекции симметричны. Данная зона координирует действия сенсорной и двигательной информации, например, при ощупывании предметов двумя руками.

Моторные (двигательные) зоны коры

Передняя центральная извилина (кпереди от роландовой борозды) и прилегающие к ней задние отделы первой и второй лобных извилин составляют двигательную зону мозговой коры. Ядром двигательного анализатора является передняя центральная извилина (поле 4). Характерной цитоархитектонической особенностью поля 4 служит отсутствие IV слоя зернистых клеток к наличие в слое V гигантских пирамидных клеток Беца, длинные отростки которых в составе пирамидного пути достигают промежуточных и двигательных нейронов спинного мозга.

В области передней центральной извилины расположены центры движения для противоположных конечностей и противоположной половины лица, туловища (рис.).

    Верхнюю треть извилины занимают центры движения нижних конечностей , причем выше всех лежит центр движения стопы, ниже него - центр движения голени, а еще ниже - центр движения бедра.

    Среднюю треть занимают центры движения туловища и верхней конечности. Выше других лежит центр движений лопатки, затем - плеча, предплечья, а еще ниже - кисти.

    Нижняя треть передней центральной извилины (область покрышки - operculum) занята центрами движения для лица, жевательных мышц, языка, мягкого нёба и гортани.

Так как нисходящие двигательные пути перекрещиваются, то раздражение всех указанных точек вызывает сокращение мышц противоположной стороны тела. В моторной зоне наибольшую площадь занимает представительство мускулатуры кистей рук, лица, губ, языка и наименьшую - туловища и нижних конечностей. Размерам коркового моторного представительства соответствует точность и тонкость управления движениями данной части тела.

Электрическое или химическое раздражение участков поля 4 вызывает координированное сокращение строго определенных мышечных групп. Экстирпация какого-нибудь центра сопровождается параличом соответствующего отрезка мускулатуры. Паралич этот через некоторое время сменяется слабостью и ограничением движения (парез), так как многие двигательные акты могут выполняться за счет непирамидных путей или благодаря компенсаторной деятельности уцелевших корковых механизмов.

Премоторная зона коры

Двигательные зоны коры. Выделяют первичную и вторичную моторные зоны.

В первичной моторной зоне (прецентральная извилина, поле 4) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. В ней имеется четкая топографическая проекция мышц тела (см. рис. 2). Основной закономерностью топографического представительства является то, что регуляция деятельности мышц, обеспечивающих наиболее точные и разнообразные движения (речь, письмо, мимика), требует участия больших по площади участков двигательной коры. Раздражение первичной моторной коры вызывает сокращение мышц противоположной стороны тела (для мышц головы сокращение может быть билатеральное). При поражении этой корковой зоны утрачивается способность к тонким координированным движениям конечностями, особенно пальцами рук.

Вторичная моторная зона (поле 6) расположена как на латеральной поверхности полушарий, впереди прецентральной извилины (премоторная кора), так и на медиальной поверхности, соответствующей коре верхней лобной извилины (дополнительная моторная область). Вторичная двигательная кора в функциональном плане имеет главенствующее значение по отношению к первичной двигательной коре, осуществляя высшие двигательные функции, связанные с планированием и координацией произвольных движений. Здесь в наибольшей степени регистрируется медленно нарастающий отрицательный потенциал готовности, возникающий примерно за 1 с до начала движения. Кора поля 6 получает основную часть импульсации от базальных ганглиев и мозжечка, участвует в перекодировании информации о плане сложных движений.

Раздражение коры поля 6 вызывает сложные координированные движения, например поворот головы, глаз и туловища в противоположную сторону, содружественные сокращения сгибателей или разгибателей на противоположной стороне. В премоторной коре расположены двигательные центры, связанные с социальными функциями человека: центр письменной речи в заднем отделе средней лобной извилины (поле 6), центр моторной речи Брока в заднем отделе нижней лобной извилины (поле 44), обеспечивающие речевой праксис, а также музыкальный моторный центр (поле 45), обеспечивающий тональность речи, способность петь. Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, от базальных ганглиев и мозжечка. Основным эфферентным выходом двигательной коры на стволовые и спинальные моторные центры являются пирамидные клетки V слоя. Основные доли коры большого мозга представлены на рис. 3.

Рис. 3. Четыре основные доли коры головного мозга (лобная, височная, теменная и затылочная); вид сбоку. В них расположены первичная двигательная и сенсорная области , двигательные и сенсорные области более высокого порядка (второго, третьего и т.д.) и ассоциативная (неспецифичная) кора

Ассоциативные области коры (неспецифическая, межсенсорная, межанализаторная кора) включают участки новой коры большого мозга, которые расположены вокруг проекционных зон и рядом с двигательными зонами, но не выполняют непосредственно чувствительных или двигательных функций, поэтому им нельзя приписывать преимущественно сенсорные или двигательные функции, нейроны этих зон обладают большими способностями к обучению. Границы этих областей обозначены недостаточно четко. Ассоциативная кора является филогенетически наиболее молодой частью новой коры, получившей наибольшее развитие у приматов и у человека. У человека она составляет около 50% всей коры или 70 % неокортекса. Термин «ассоциативная кора» возник в связи с существовавшим представлением о том, что эти зоны за счет проходящих через них кортико-кортикальных соединений связывают двигательные зоны и одновременно служат субстратом высших психических функций. Основными ассоциативными зонами коры являются: теменно-височно-затылочная, префронтальная кора и лимбическая ассоциативная зона.

Нейроны ассоциативной коры являются полисенсорными (полимодальными): они отвечают, как правило, не на один (как нейроны первичных сенсорных зон), а на несколько раздражителей, т. е. один и тот же нейрон может возбуждаться при раздражении слуховых, зрительных, кожных и др. рецепторов. Полисенсорность нейронов ассоциативной коры создается кортико-кортикальными связями с разными проекционными зонами, связями с ассоциативными ядрами таламуса. В результате этого ассоциативная кора представляет собой своеобразный коллектор различных сенсорных возбуждений и участвует в интеграции сенсорной информации и в обеспечении взаимодействия сенсорных и моторных областей коры.

Ассоциативные области занимают 2-й и 3-й клеточные слои ассоциативной коры, на которых происходит встреча мощных одномодальных, разномодальных и неспецифических афферентных потоков. Работа этих отделов коры мозга необходима не только для успешного синтеза и дифференцировки (избирательного различения) воспринимаемых человеком раздражителей, но и для перехода к уровню их символизации, т. е. для оперирования значениями слов и использования их для отвлеченного мышления, для синтетического характера восприятия.

С 1949 г. широкую известность получила гипотеза Д. Хебба, постулирующая в качестве условия синаптической модификации совпадение пресинаптической активности с разрядом пост-синаптического нейрона, поскольку не всякая активность синапса ведет к возбуждению постсинаптического нейрона. На основании гипотезы Д. Хебба можно предположить, что отдельные нейроны ассоциативных зон коры связаны разнообразными путями и образуют клеточные ансамбли, выделяющие «подобразы», т.е. соответствующие унитарным формам восприятия. Эти связи, как отмечал Д.Хебб, настолько хорошо развиты, что достаточно активировать один нейрон, как возбуждается весь ансамбль.

Аппаратом, выполняющим роль регулятора уровня бодрствования, а также осуществляющим избирательную модуляцию и актуализацию приоритета той или иной функции, является модулирующая система мозга, которую часто называют лимбико-ретикулярный комплекс, или восходящая активирующая система. К нервным образованиям этого аппарата относятся лимбическая и неспецифические системы мозга с активирующими и инактивируюшими структурами. Среди активирующих образований прежде всего выделяют ретикулярную формацию среднего мозга, задний гипоталамус, голубое пятно в нижних отделах ствола мозга. К инактивирующим структурам относят преоптическую область гипоталамуса, ядра шва в стволе мозга, фронтальную кору.

В настоящее время по таламокортикальным проекциям предлагают выделять три основные ассоциативные системы мозга: таламотеменную, таламолобную и таламовисочную.

Таламотеменная система представлена ассоциативными зонами теменной коры, получающими основные афферентные входы от задней группы ассоциативных ядер таламуса. Теменная ассоциативная кора имеет эфферентные выходы на ядра таламуса и гипоталамуса, в моторную кору и ядра экстрапирамидной системы. Основными функциями таламотеменной системы являются гнозис и праксис. Под гнозисом понимают функцию различных видов узнавания: формы, величины, значения предметов, понимание речи, познание процессов, закономерностей и др. К гностическим функциям относится оценка пространственных отношений, например, взаимного расположения предметов. В теменной коре выделяют центр стереогнозиса, обеспечивающий способность узнавания предметов на ощупь. Вариантом гностической функции является формирование в сознании трехмерной модели тела («схемы тела»). Под праксисом понимают целенаправленное действие. Центр праксиса находится в надкорковой извилине левого полушария, он обеспечивает хранение и реализацию программы двигательных автоматизированных актов.

Таламолобная система представлена ассоциативными зонами лобной коры, имеющими основной афферентный вход от ассоциативного медиодорсального ядра таламуса, других подкорковых ядер. Основная роль лобной ассоциативной коры сводится к инициации базовых системных механизмов формирования функциональных систем целенаправленных поведенческих актов (П. К.Анохин). Префронтальная область играет главную роль в выработке стратегии поведения. Нарушение этой функции особенно заметно, когда необходимо быстро изменить действие и когда между постановкой задачи и началом ее решения проходит некоторое время, т.е. успевают накопиться раздражители, требующие правильного включения в целостную поведенческую реакцию.

Таламовисочная система. Некоторые ассоциативные центры, например, стереогнозиса, праксиса, включают в себя и участки височной коры. В височной коре расположен слуховой центр речи Вернике, находящийся в задних отделах верхней височной извилины левого полушария. Этот центр обеспечивает речевой гнозис: распознание и хранение устной речи как собственной, так и чужой. В средней части верхней височной извилины находится центр распознания музыкальных звуков и их сочетаний. На границе височной, теменной и затылочной долей находится центр чтения, обеспечивающий распознание и хранение образов.

Существенную роль в формировании поведенческих актов играет биологическое качество безусловной реакции, а именно ее значение для сохранения жизни. В процессе эволюции это значение было закреплено в двух противоположных эмоциональных состояниях – положительном и отрицательном, которые у человека составляют основу его субъективных переживаний -- удовольствия и неудовольствия, радости и печали. Во всех случаях целенаправленное поведение строится в соответствии с эмоциональным состоянием, возникшим при действии раздражителя. Во время поведенческих реакций отрицательного характера напряжение вегетативных компонентов, особенно сердечно-сосудистой системы , в отдельных случаях, особенно в непрерывных так называемых конфликтных ситуациях, может достигать большой силы, что вызывает нарушение их регуляторных механизмов (вегетативные неврозы).

В этой части книги рассмотрены основные общие вопросы аналитико-синтетической деятельности мозга, которые позволят перейти в последующих главах к изложению частных вопросов физиологии сенсорных систем и высшей нервной деятельности.

Сенсорная зона коры головного мозга - небольшая часть мозга, располагающаяся между двигательной зоной коры и теменной долей. Именно этот отдел мозга отвечает за телесные ощущения и восприятия. Все наши тактильные, зрительные, слуховые и обонятель ные импульсы рождаются в сенсорной зоне коры головного мозга. Максимальная концентрация спинномозговой жидкости достигается там, где в детстве у нас был родничок. Даосы считают, что затвердевание этой мягкой области кладет начало процессу, благодаря которому мы воспринимаем каждое ощущение как самостоятельное. В детстве мы чувствуем внешние раздражители, но не способны осознавать каждое ощущение отдельно.

Даосы называют этот район полостью Бай Гуй, в которой при переживании напряженных ментальных состояний концентрируются все ощущения и разум может постичь абсолютную чистоту - просветление сознания.

В даосизме эта область мозга стимулируется как посредством визуализации света в области макушки, так и при помощи пристального созерцания ее внутренним оком, цель которого - повысить уровень ее восприятия. Эта зона важна не только с точки зрения восстановления молодости и достижения просветления сознания, но и потому, что именно через нее дух покидает тело в момент смерти.

Когда сенсорная зона коры головного мозга интенсивно стимулируется, способность тела получать физические и ментальные ощущения сильно возрастает. Эта повышенная восприимчивость к ощущениям также выражается в реакции гипоталамуса на сильное сексуальное возбуждение; гипоталамус посылает гипофизу сигнал о необходимости выброса гонадотропинов в эндокринную систему.

Это происходит только в том случае, если человек испытал какое-либо интенсивное состояние экстатического характера, которое лежит в основе почти всего трансцендентного опыта, описанного в трактатах по медитации и йоге. Секс, будучи источником энергии, предоставляет лучшие и наиболее эффективные средства для того, чтобы испытать подобное состояние.

Спинной и головной мозг целиком окружены спинномозговой жидкостью, и именно эта жидкость, как считают даосы, ответственна за прохождение сексуальной энергии из почек в головной мозг. Эффект просветления вызывается сочетанием повышения температуры крови и движения сексуальной энергии, достигающей верхней части головы. Не забывайте, что довольно много этой жидкости находится в сенсорной зоне коры головного мозга.

И Тигрицы, и даосы стремятся к стимуляции сенсорной зоны коры. Методы могут отчасти отличаться, но конечная цель одна и та же. Тигрица добивается просветления сознания путем поглощения мужской сексуальной энергии, которое в даосских книгах называется восстановлением инь через ян. Мужчина-даос достигает просветления посредством возвращения сексуальной энергии в мозг, или восстановления инь через ян.

Тигрица, при помощи полной концентрации на оральной стимуляции полового члена мужчины, может достичь состояния высочайшей восприимчивости, результатом которой становится способность Тигрицы поглощать мужскую сексуальную энергию и переживать духовную трансформацию. Главный смысл состоит в усиленной стимуляции гипофиза и гипоталамуса, чтобы они реагировали на пределе возможностей и вырабатывали гормоны, способные восстановить молодость.

Оргазм

Обсудив то, как западная наука и даосская духовная алхимия воспринимают процесс поглощения энергии, теперь мы можем более подробно поговорить об оргазме как таковом.

Непосредственно перед или сразу после оргазма сознание человека находится в состоянии повышенной восприимчивости. Во время оргазма в нем происходит остановка времени и вся нервная система сосредоточивается на ощущениях и выделении половых жидкостей.

Чем интенсивнее оргазм, тем насыщеннее и ярче ощущения и восприятие.

Также оргазм активно стимулирует затылочную долю головного мозга (которая контролирует зрение) и снижает активность двигательной зоны коры (которая контролирует произвольные движения). Во время оргазма мы воспринимаем и чувствуем окружающий мир через остро сконцентрированные ощущения. Цвета нам кажутся ярче, а сознание наполняется светящимися образами. Тело больше не контролирует произвольные движения, а совершает лишь те, что способствуют получению оргазма. Даже слуховой и речевой центры головного мозга находятся в состоянии повышенной ак­тивности.

Что касается повышения остроты слуха и зрения, то многие сексуальные неудачи происходят как раз из-за того, что сексуальный партнер говорит во время оргазма второго партнера какие-нибудь неподходящие слова. Человек в этот момент настолько чувствителен, что слова обиды или неодобрения западают очень глубоко в сознание и влияют на его сексуальное поведение в будущем. Именно поэтому, как вы узнаете позже, во время полового акта Тигрица всегда выказывает глубокое одобрение в отношении пениса партнера, качества его спермы и действий.

После оргазма весь организм погружается в состояние покоя, и поэтому большинство сексологов считают его транквилизатором. Это происходит потому, что гипофиз, который также контролирует выработку успокаивающих гормонов, моментально отправляет их в эндокринную систему, что является естественной защитой организма от слишком интенсивных и длительных ощущений. Реакция на успокаивающие гормоны более ярко выражена у мужчин, чем у женщин, так как организм последних лучше приспособлен к множественным оргазмам; обычно для того, чтобы гипофиз выбросил в женский организм успокаивающие гормоны, требуется больше одного оргазма. Этим объясняется тот факт, что женщины после оргазма могут быть очень энергичными, так как все еще находятся под действием гонадотропинов.

Мужчины тоже могут получать множественные оргазмы, но это происходит только тогда, когда последующая стимуляция достаточно интенсивна и между оргазмом и новым возбуждением проходит определенное количество времени, нужное для того, чтобы успо­каивающие гормоны потеряли активность. Интенсивность первого оргазма определяет количество спящих гормонов, выбрасываемых гипофизом в организм.

На мужчин, у которых часто происходит семяизвержение, успокаивающие гормоны с возрастом влияют все меньше и меньше. Чтобы- проверить действие этих гормонов, мужчина должен сдерживать эякуляцию в течение двух недель или около того. Тогда во время семяизвержения ему будет трудно не закрыть глаза. Эти успокаивающие гормоны необходимы для восстановления мужской юности, поэтому эякуляция не должна происходить часто. После этого во время эякуляции эти гормоны будут сильнее влиять на всю эндокринную систему. Тигрица извлекает пользу не только из своего оргазма, но и из оргазма партнера. Увеличивая интенсивностьоргазма мужчины, она может достичь состояния высочайшей восприимчивости, в котором поглощает и его оргазм, и его сексуальную энергию. Она достигает этого, целиком концентрируясь на максимальном возбуждении мужчины и его оргазме - в том смысле, что все ее внимание обращено на его пенис и сперму. Как ребенок, находящийся в возбужденном и нетерпеливом состоянии перед тем, как открыть подарок на день рождения, она стонет в ожидании его оргазма. Держа его пенис на расстоянии пяти-семи сантиметров от своего лица, она смотрит прямо на головку члена, а когда сперма выделяется, она представляет, как энергия его оргазма проникает прямо в верхнюю часть ее головы, Когда у мужчины заканчивается семяизвержение, она закрывает глаза и водит зрачками вверх и вниз, как будто пристально рассматривает верхнюю часть мозга. Она обращает все свое внимание на ощущение тепла его семени на своем лице. Когда головка его пениса находится у нее во рту, она совершает сосательные движения девять раз (очень аккуратно и без усилия, если пенис слишком чувствительный) и снова представляет себе энергию его члена, проникающую в верхнюю часть ее головы.

В этих своих практиках она в полной мере использует свое воображение. Когда мы стареем и испытываем на себе неблагоприятное влияние окружающей среды и давление общества, мы теряем способность использовать воображение. Воображение является одним из мощнейших инструментов, который мы, люди, увы, используем слишком редко. В детском возрасте фантазия мешает нам отличать воображаемых друзей от настоящих и дает возможность зримо и ярко представлять все наши цели и надежды. С возрастом мы используем воображение все меньше и меньше, хотя оно и участвует в формировании религиозных переживаний: мы воспринимаем своего бога как настоящего, живого человека. В этом отношении мы называем воображение верой, но она функционирует точно таким же образом.

Ребенок использует воображение чаще, чем рациональное мышление, которое разрушает силу воображения. Белая тигрица использует свое воображение в полной мере и в результате получает возможность воспринимать сексуальную энергию как нечто вполне материальное. Мы должны помнить, что все, что существует в мире, является материальным воплощением идеи.

Подобно тому, как некоторые успешные спортсмены, бизнесмены и кинозвезды еще в подростковом возрасте мечтали о том, чтобы стать богатыми и знаменитыми, чувствуя, что это непременно случится, Тигрицы представляют и воспринимают себя уже достигшими юности и бессмертия - и совершенно уверены, что так оно и будет. Используя свое воображение, Тигрица способна увеличить интенсивность не только своего собственного оргазма, но и оргазма партнера и воссоздать духовное и физическое состояние своей молодости.

Тигрица увеличивает интенсивность своих половых ощущений, используя мужчин, которых называют Зелеными драконами. Она поступает так для того, чтобы избежать рутины, являющейся отрицательным последствием длительных сексуальных отношений с одним партнером, у которого интенсивность ощущений со временем чаще всего постепенно снижается. Кроме того, как гласит пословица, близкие отношения рождают презрение. С одним мужчиной ее сексуальное желание станет реализовываться в сексе, целью которого будет продолжение рода, а не духовное возрождение. Утратив стремление к возрождению, она уже не может измениться. Также Тигрица использует других мужчин для возбуждения своего основного партнера, Нефритового дракона, чтобы он, наблюдая за тем, как она занимается с ними любовью, тоже мог сделать свой оргазм более интенсивным. Таким образом, увеличение интенсивности своего оргазма и оргазма партнера является для Тигрицы ключом к очищению, сохранению и восстановлению молодости. С этой точки зрения секс становится лекарством.





Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта