Главная » Досуг » Электромагнитное оружие россии. Электромагнитная бомба: принцип действия и защита Электромагнитный импульс оружие

Электромагнитное оружие россии. Электромагнитная бомба: принцип действия и защита Электромагнитный импульс оружие


Когда говорят об электромагнитном оружии, чаще всего имеют в виду выведение из строя электрического и электронного оборудования наведением на него электромагнитных импульсов (ЭМИ). Действительно, возникающие в результате мощного импульса в цепях электроники токи и напряжение, приводят к её выходу из строя. И чем больше его мощность, тем на большем расстоянии приходят в негодность любые «признаки цивилизации».

Одним из самых мощных источников ЭМИ является ядерное оружие. Например, американское ядерное испытание в Тихом океане в 1958 году вызвало на Гавайских островах нарушение радио- и телевещания и перебои с освещением, а в Австралии - нарушение радионавигации на 18 часов. В 1962 году, когда на высоте 400 км. американцы взорвали 1,9 Мт заряд – «скончались» 9 спутников, надолго пропала радиосвязь на обширном участке Тихого океана. Поэтому электромагнитный импульс — один из поражающих факторов ядерного оружия.

Но ядерное оружие применимо только в глобальном конфликте, а возможности ЭМИ очень полезны в более прикладном военном деле. Поэтому неядерные средства поражения ЭМИ начали проектироваться почти сразу вслед за ядерным оружием.

Конечно, генераторы ЭМИ существуют давно. Но создать достаточно мощный (а значит, «дальнобойный») генератор не так-то просто технически. Ведь, по сути, это прибор, преобразующий электрическую или другую энергию в электромагнитное излучение высокой мощности. И если у ядерного боеприпаса нет проблем с первичной энергетикой, то в случае использования электричества вместе с источниками питания (напряжения) это будет скорее сооружение, чем оружие. В отличие от ядерного заряда, доставить его «в нужное время, в нужное место» более проблематично.

И вот в начале 90-х стали появляться сообщения о неядерных «электромагнитных бомбах» (E-Bomb). Как всегда, источником стала западная пресса, а поводом – операция американцев против Ирака 1991 года. «Новое секретное супероружие», действительно, применялось для подавления и вывода из строя иракских систем ПВО и связи.

Однако у нас подобное оружие предлагал ещё в 1950-х годах академик Андрей Сахаров (ещё до того, как стал «миротворцем»). Кстати, на вершине творческой деятельности (которая приходится не на период диссидентства, как многие думают) у него была масса оригинальных идей. Например, в годы войны он был одним из создателей оригинального и надёжного прибора для контроля бронебойных сердечников на патронном заводе.

А в начале 50-х он предлагал «смыть» восточное побережье США волной гигантского цунами, которую можно инициировать серией мощных морских ядерных взрывов на значительном удалении от берегов. Правда, командование ВМФ, увидев «ядерную торпеду», изготовленную для этой цели, наотрез отказалось принимать её на вооружение из соображений гуманизма - да ещё и наорало на учёного многопалубным фотским матом. По сравнению с этой идеей электромагнитная бомба - действительно «гуманное оружие».

В предложенном Сахаровым неядерном боеприпасе мощный ЭМИ образовывался в результате сжатия магнитного поля соленоида взрывом обычного взрывчатого вещества. Благодаря высокой плотности химической энергии во взрывчатом веществе это избавляло от необходимости использовать источник электрической энергии для преобразования в ЭМИ. К тому же таким способом можно было получить мощный ЭМИ. Правда, это же делало прибор одноразовым, поскольку он разрушался инициирующим взрывом. У нас этот тип устройств стал называться взрывомагнитным генератором (ВМГ).

Собственно, до этой же идеи додумались американцы с британцами в конце 70-х годов, в результате чего и появились боеприпасы, испытанные в боевой обстановке в 1991 году. Так что ничего «нового» и «суперсекретного» в этом виде техники нет.

У нас (а Советский Союз занимал ведущие позиции в области физических исследований) подобные устройства находили применение в сугубо мирных научных и технологических областях - таких, как транспортировка энергии, ускорение заряженных частиц, нагрев плазмы, накачка лазеров, радиолокация высокого разрешения, модификация материалов и т. д. Конечно, велись исследования и в направлении военного применения. Изначально ВМГ использовались в ядерных боеприпасах для систем нейтронного подрыва. Но были и идеи использования «генератора Сахарова» как самостоятельного оружия.

Но прежде чем говорить о применении ЭМИ-оружия, следует сказать, что Советская Армия готовилась воевать в условиях применения ядерного оружия. То есть в условиях действующего на технику поражающего фактора ЭМИ. Поэтому вся военная техника разрабатывалась с учётом защиты от этого поражающего фактора. Способы различны - начиная от простейшего экранирования и заземления металлических корпусов аппаратуры и заканчивая применением специальных предохранительных устройств, разрядников и устойчивой к ЭМИ архитектурой аппаратуры.

Так что говорить, будто от этого «чудо-оружия» нет защиты, тоже не стоит. Да и радиус действия у ЭМИ-боеприпасов не такой большой, как в американской прессе - излучение распространяется во всех направлениях от заряда, и плотность его мощности убывает пропорционально квадрату расстояния. Соответственно, убывает и воздействие. Конечно, вблизи точки подрыва защитить технику сложно. Но говорить об эффективном воздействии на километры не приходится – для достаточно мощных боеприпасов это будут десятки метров (что, правда, больше зоны поражения фугасных боеприпасов аналогичного размера). Здесь достоинство такого оружия – оно не требует точечного попадания – обращается в недостаток.

Со времён «генератора Сахарова» подобные устройства постоянно совершенствовались. Занимались их разработкой множество организаций: Институт высоких температур АН СССР, ЦНИИХМ, МВТУ, ВНИИЭФ и много других. Устройства стали достаточно компактны, чтобы стать боевыми частями средств поражения (от тактических ракет и артиллерийских снарядов до диверсионных средств). Улучшались их характеристики. Кроме взрывчатки, в качестве источника первичной энергии стали использовать ракетное топливо. ВМГ стали применяться как один из каскадов для накачки генераторов СВЧ-диапазона. Несмотря на ограниченные возможности по поражению целей, эти средства занимают промежуточное положение между средствами огневого поражения и средствами радиоэлектронного подавления (которые, по сути, тоже являются электромагнитным оружием).

О конкретных образцах известно мало. Например, Александр Борисович Прищепенко описывает успешные опыты по срыву атаки противокорабельных ракет П-15 с помощью подрыва компактных ВМГ на дистанциях до 30 метров от ракеты. Это уже, скорее, средство ЭМИ-защиты. Он же описывает «ослепление» магнитных взрывателей противотанковых мин, которые, находясь на дистанции до 50 метров от места подрыва ВМГ, на значительное время переставали срабатывать.

В качестве ЭМИ-боеприпаса испытывались не то что «бомбы» -- реактивные гранаты для ослепления комплексов активной защиты (КАЗ) танков! В противотанковом гранатомёте РПГ-30 – два ствола: один основной, другой малого диаметра. 42-миллиметровая ракета «Атропус», оснащённая электромагнитной боевой частью, выстреливается в направлении танка чуть ранее кумулятивной гранаты. Ослепив КАЗ, она позволяет последней спокойно полететь мимо «задумавшейся» защиты.

Немного отвлекаясь, скажу, что это довольно актуальное направление. Придумали КАЗ мы («Дрозд» ставился ещё на Т-55АД). В дальнейшем появились «Арена» и украинский «Заслон». Сканируя окружающее машину пространство (обычно в миллиметровом диапазоне), они отстреливают в направлении подлетающих противотанковых гранат, ракет и даже снарядов небольшие поражающие элементы, способные изменить их траекторию или привести к преждевременной детонации. С оглядкой на наши разработки, на Западе, в Израиле и Юго-восточной Азии тоже стали появляться такие комплексы: «Trophy», «Iron Fist», «EFA», «KAPS», «LEDS-150», «AMAP ADS», «CICS», «SLID» и другие. Сейчас они получают широчайшее распространение и начинают штатно устанавливаться не только на танки, но даже на лёгкие бронемашины. Противодействие им становится неотъемлемой частью борьбы с бронетехникой и защищёнными объектами. А компактные электромагнитные средства подходят для этой цели как нельзя лучше.

Но вернёмся к электромагнитному оружию. Кроме взрывомагнитных устройств, существуют излучатели ЭМИ направленного и всенаправленного действия, использующие в качестве излучающей части различные антенные устройства. Это уже не одноразовые устройства. Их можно применять на значительном расстоянии. Они делятся на стационарные, мобильные и компактные переносные. Мощные стационарные излучатели ЭМИ большой энергии, требуют строительства специальных сооружений, высоковольтных генераторных установок, антенных устройств больших размеров. Но и возможности их весьма существенны. Передвижные излучатели сверхкоротких ЭМИ с максимальной частотой повторения до 1 кГц, можно размещать в автофургонах или автоприцепах. Они также имеют значительную дальность действия и достаточную для своих задач мощность. Переносные устройства чаще всего используются для различных задач обеспечения безопасности, вывода из строя средств связи, разведки и взрывных устройств на небольших расстояниях.

О возможностях отечественных мобильных установок можно судить по представленному на выставке вооружений ЛИМА-2001 в Малайзии экспортному варианту комплекса «Ранец-E». Он выполнен на шасси МАЗ-543, имеет массу около 5 тонн, обеспечивает гарантированное поражение электроники наземной цели, летательного аппарата или управляемого боеприпаса на дальностях до 14 километров и нарушения в её работе на расстоянии до 40 км.

Из несекретных разработок известны также изделия МНИРТИ -- «Снайпер-М» «И-140/64» и «Гигаватт», выполненные на базе автомобильных прицепов. Они, в частности, используются для отработки средств защиты радиотехнических и цифровых систем военного, специального и гражданского назначения от поражения ЭМИ.

Ещё немного следует сказать о средствах радиоэлектронного противодействия. Тем более, что они тоже относятся к радиочастотному электромагнитному оружию. Это чтобы не создалось впечатления, что мы как-то не способны бороться с высокоточным оружием и «всемогущими беспилотниками и боевыми роботами». Все эти модные и дорогостоящие штуки имеют весьма уязвимое место – электронику. Даже относительно простые средства способны надёжно блокировать сигналы GPS и радиовзрыватели, без которых эти системы не обходятся.

ВНИИ «Градиент» серийно производит станция помех радиовзрывателям снарядов и ракет СПР-2 «Ртуть-Б», выполненные на базе БТР и штатно состоящие на вооружении. Аналогичные устройства производит Минское «КБ РАДАР». А поскольку радиовзрывателями сейчас оснащены до 80% западных снарядов полевой артиллерии, мин и неуправляемых реактивных снарядов и почти все высокоточные боеприпасы, - эти достаточно простые средства позволяют защитить от поражения войска в т. ч. непосредственно в зоне контакта с противником.

Концерн «Созвездие» производит серию малогабаритных (носимых, возимых, автономных) передатчиков помех серии РП-377. С их помощью можно глушить сигналы GPS, а в автономном варианте, укомплектованном источниками питания, ещё и расставив передатчики на некоторой площади, ограниченной только количеством передатчиков.

Сейчас готовится экспортный вариант более мощной системы подавления GPS и каналов управления оружием. Она уже является системой объектовой и площадной защиты от высокоточных средств поражения. Построена она по модульному принципу, который позволяет варьировать площади и объекты защиты. Когда её покажут, каждый уважающий себя бедуин сможет защитить своё поселение от «высокоточных методов демократизации».

Ну и возвращаясь к новым физическим принципам оружия, нельзя не вспомнить разработки НИИРП (ныне подразделение концерна ПВО «Алмаз-Антей») и Физико-технического института им. Иоффе. Исследуя воздействие мощного СВЧ-излучения с земли на воздушные объекты (цели), специалисты этих учреждений неожиданно получили локальные плазменные образования, которые получались на пересечении потоков излучения от нескольких источников. При контакте с этими образованиями воздушные цели претерпевали огромные динамические перегрузки и разрушались.

Согласованная работа источников СВЧ-излучения позволяла быстро менять точку фокусировки, то есть производить перенацеливание с огромной скоростью или сопровождать объекты практически любых аэродинамических характеристик. Опыты показали, что воздействие эффективно даже по боевым блокам МБР. По сути, это уже даже не СВЧ-оружие, а боевые плазмоиды.

К сожалению, когда в 1993 году коллектив авторов представил проект системы ПВО/ПРО основанной на этих принципах на рассмотрение государства, Борис Ельцин сразу предложил совместную разработку американскому президенту. И хотя сотрудничество по проекту (слава Богу!) не состоялось, возможно, именно это подтолкнуло американцев к созданию на Аляске комплекса HAARP (High freguencu Active Auroral Research Program).

Проводимые на нём с 1997 года исследования, декларативно носят "сугубо мирный характер". Однако никакой гражданской логики в исследованиях воздействия СВЧ излучения на ионосферу Земли и воздушные объекты, лично я не усматриваю. Остаётся только надеяться на традиционную для американцев провальную историю масштабных проектов.

Ну а нам следует порадоваться, что к традиционно сильным позициям в области фундаментальных исследований, прибавилась заинтересованность государства в оружии на новых физических принципах. Программы по нему сейчас носят приоритетный характер.

В последнее время в открытой печати все чаще появляются публикации об электромагнитном оружии (ЭМО). Материалы об ЭМО пестрят различными сенсационными, а порой и откровенно антинаучными «выкладками» и экспертными мнениями, часто настолько полярными, что складывается впечатление, что люди говорят вообще о разных вещах. Электромагнитное оружие называют и «технологиями будущего» и одной из «величайших обманок» в истории. Но истина, как это часто бывает, лежит где-то посередине…

Электромагнитное оружие (ЭМО) - оружие, в котором для придания начальной скорости снаряду используется магнитное поле, либо энергия электромагнитного излучения используется непосредственно для поражения или нанесения повреждений технике и живой силе противника. В первом случае магнитное поле используется как альтернатива взрывчатым веществам в огнестрельном оружии. Во втором - используется возможность наведения токов высокого напряжения и электромагнитных импульсов высокой частоты для выведения из строя электрического и электронного оборудования противника. В третьем - применяется эм-излучение определенной частоты и напряженности с целью вызывание болевых или иных (страха, паники, слабости) эффектов у человека. ЭМ оружие второго типа позиционируется как безопасное для людей и служащее для вывода из строя техники и средств связи. Электромагнитное оружие третьего типа, приводящее к временной небоеспособности живой силы противника, относится к категории оружия нелетального действия.

Электромагнитное оружие, разрабатываемое в настоящее время, можно разделить на несколько типов, различающихся по принципу использования свойств электромагнитного поля:

— Электромагнитная пушка (ЭМП)

— Система активного «отбрасывания» (САО)

— «Глушилки» — различные виды систем радиоэлектронной борьбы (РЭБ)

— Электромагнитные бомбы (ЭБ)

В первой части цикла статей, посвященных электромагнитному оружию, речь пойдет об электромагнитных пушках. Ряд стран, например США, Израиль и Франция активно проводят разработки в этой области, сделав ставку на использование электромагнитно-импульсных систем для генерации кинетической энергии беозарядов.

У нас, в России, пошли другим путем - основной упор сделали не на электронные пушки, как США или Израиль, а на системы радиоэлектронной борьбы и электромагнитные бомбы. Например, как утверждают специалисты, работающие над проектом «Алабуга», отработка технологии уже минула стадию полевых испытаний, в данный момент идет стадия доводки опытных образцов в целях увеличить мощность, точность и дальность излучения. Сегодня боевая часть «Алабуги», разорвавшись на высоте 200-300 метров, способна отключить всю радио- и электронную аппаратуру противника в радиусе 4 км и оставить войсковое подразделение масштаба батальон/полк без средств связи, управления и наведения огня, превратив всю имеющуюся технику противника в «груду металлолома». Может быть именно эту систему имел в виду Владимир Владимирович, когда недавно говорил, о «секретном оружии», которое Россия может применить в случае войны? Впрочем, подробнее про систему «Алабуга» и других новейших российских разработках в области ЭМО речь пойдет в следующем материале. А сейчас, давайте, вернемся к электромагнитным пушкам, наиболее известном и «раскрученном» в СМИ типе электромагнитного оружия.

Может возникнуть резонный вопрос - зачем вообще нужны ЭМ-пушки, разработка которых требует огромных затрат времени и ресурсов? Дело в том, что существующие артиллерийские системы (на основе порохов и взрывчатых веществ), по оценкам экспертов и ученых, достигли своего предела - скорость выпущенного с их помощью снаряда ограничена 2,5 км/сек. Для того, чтобы увеличить дальнобойность артиллерийских систем и кинетическую энергию заряда (а следовательно, и поражающую способность боевого элемента) необходимо увеличить начальную скорость снаряда до 3-4 км/сек, а существующие системы на это не способны. Для этого нужны принципиально новые решения.

Идея создания электромагнитной пушки зародилась практически одновременно в России и Франции в разгар Первой мировой войны. В её основу легли труды немецкого исследователя Йоганна Карла Фридриха Гаусса, который разработал теорию электромагнетизма, воплотившуюся в необычное устройство - электромагнитную пушку. Тогда, в начале ХХ века всё ограничилось опытными образцами, показавшими, к тому же, довольно посредственные результаты. Так французский опытный образец ЭМП смог разогнать 50-граммовый снаряд лишь до скорости 200 м/сек, что ни шло ни в какое сравнение с существовавшими на тот момент пороховыми артиллерийскими системами. Её российский аналог - «магнитно-фугальная пушка» и вовсе осталась лишь «на бумаге», - дальше чертежей дело не пошло. Всё дело в особенностях данного вида вооружения. Пушка Гаусса стандартной конструкции состоит из соленоида (катушки) с расположенным внутри него стволом из диэлектрического материала.

Пушка Гаусса заряжается снарядом из ферромагнетика. Чтобы заставить снаряд двигаться, на катушку подаётся электрический ток, создающий магнитное поле, благодаря действию которого снаряд «втягивается» в соленоид, - и скорость снаряда на выходе из «ствола» тем больше, чем мощнее сгенерированный электромагнитный импульс. В настоящее время ЭМ-пушки Гаусса и Томпсона, вследствие ряда принципиальных (и на данный момент неустранимых) недостатков, не рассматриваются с точки зрения практического применения, основным видом ЭМ-пушек, разрабатываемых для постановки на вооружение, являются «рельсотроны».

В состав рельсотрона входят мощный источник питания, коммутационная и управляющая аппаратура и два электропроводящих «рельса» длиной от 1 до 5 метров, которые являются своего рода «электродами», расположенными друг от друга на расстоянии примерно 1 см. В основу действия рельсотрона положен кумулятивный эффект, когда энергия электромагнитного поля взаимодействует с энергией плазмы, которая образуется в результате «сгорания» специальной вставки в момент подачи высокого напряжения. В нашей стране об электромагнитных пушках заговорили в 50-е годы, когда началась гонка вооружений, и тогда же начались работы по созданию ЭМП - «сверхоружия», способного в корне изменить расстановку сил в противостоянии с США. Советским проектом руководил выдающийся физик академик Л. А. Арцимович, один из ведущих мировых специалистов по изучению плазмы. Именно он заменил громоздкое название «электродинамический ускоритель массы» на всем известное сегодня - «рельсотрон». Разработчики рельсотронов сразу с толкнулись серьезной проблемой: электромагнитный импульс должен быть настолько мощным, чтобы возникла ускоряющая сила, способная разогнать снаряд до скорости, как минимум 2М (около 2,5 км/с), и вместе с тем настолько кратковременным, чтобы снаряд не успел «испариться» или разлететься на куски. Поэтому снаряд и рельс должны обладать как можно более высокой электрической проводимостью, а источник тока - как можно большей электрической мощностью и как можно меньшей индуктивностью. В данный момент эта фундаментальная проблема, проистекающая из принципа действия рельсотрона, до конца не устранена, но вместе с тем разработаны инженерные решения, способные до определенной степени нивелировать ее негативные последствия и создать действующие прототипы ЭМ-пушки рельсотронного типа.

В США с начала двухтысячных идут лабораторные испытания 475-мм рельсотроной пушки, разработанной компаниями General Atomics и BAE Systems. Первые залпы из «пушки будущего», как ее уже окрестили в ряде СМИ, показали довольно обнадёживающие результаты. Снаряд массой 23-кг вылетал из ствола со скоростью, превышающей 2200 м/сек, что позволило бы поражать цели на расстоянии до 160 км. Невероятная кинетическая энергия поражающих элементов электромагнитных орудий делает боевые части снарядов, по сути, ненужными, так как сам снаряд при попадании в цель производит разрушения, сравнимые с тактической ядерной боеголовкой.

После доводки опытного образца рельсотрон планировали установить на скоростной корабль JHSV Millinocket. Однако планы эти отложили до 2020 года, так как с установкой ЭМП именно на боевые корабли возник ряд принципиальных сложностей, устранить которые пока не удалось.

Та же судьба постигла и ЭМ-пушку на передовом американском эсминце «Zumwalt». В начале 90-х годов вместо артиллерийской системы 155 калибра на перспективных кораблях типа DD(X) / GG(X) планировалось устанавливать электромагнитную пушку, но потом от этой идеи решили отказаться. В том числе потому, что при стрельбе из ЭМП пришлось бы на время отключать большую часть электроники эсминца, в том числе системы ПВО и ПРО, а также останавливать ход корабля и системы жизнеобеспечения, иначе мощности энергосистемы не хватает для обеспечения стрельбы. К тому же ресурс ЭМ-пушки, которая испытывалась на эсминце, оказался крайне невелик, - всего несколько десятков выстрелов, после чего ствол выходит из строя из-за огромных магнитных и температурных перегрузок. Данную проблему решить пока не удалось. Исследования и испытания, а точнее сказать, «освоение бюджета», по программе разработки электромагнитного оружия для эсминцев типа DD(X) в данный момент продолжаются, но вряд ли ЭМП с теми характеристиками, которые заявлялись на старте данной программы,

Есть ли у электромагнитных пушек будущее? Безусловно. И вместе с тем, не стоит ожидать, что уже завтра ЭМП заменят привычные нам артиллерийские системы. Многие ученые и эксперты в начале 80-х годов ХХ века всерьез заявляли, что не пройдет и 30-ти лет, как лазерное оружие изменит «лицо войны» до неузнаваемости. Но заявленный срок вышел, а мы до сих пор не видим на вооружении армий мира ни бластеров, ни лазерных пушек, ни генераторов силовых полей. Все это пока остается фантастикой и темой для футуристических дискуссий, хотя работы в данном русле ведутся, и по ряду направлений достигнут серьезный прогресс. Но порой между открытием и серийным образцом проходят долгие десятилетия, а бывает и так, что разработка, поначалу казавшаяся необычайно перспективной, в итоге совершенно не оправдывает ожидания, становясь очередной «технологией будущего», так и не ставшей «реальностью». И какая судьба ждет электромагнитное оружие - покажет только время!

Электромагнитное оружие: в чём российская армия опередила конкурентов

Импульсное электромагнитное оружие, или т.н. «глушилки», является реальным, уже проходящим испытания, типом вооружений российской армии. США и Израиль также проводят успешные разработки в этой области, однако сделали ставку на использование ЭМИ-систем для генерации кинетической энергии боезаряда.

У нас же пошли по пути прямого поражающего фактора и создали прототипы сразу нескольких боевых комплексов - для сухопутных войск, ВВС и ВМФ. Как утверждают специалисты, работающие над проектом, отработка технологии уже минула стадию полевых испытаний, теперь же идёт работа над ошибками и попытка увеличить мощность, точность и дальность излучения.

Сегодня наша «Алабуга», разорвавшись на высоте 200-300 метров, способна отключить всю электронную аппаратуру в радиусе 3,5 км и оставить войсковое подразделение масштаба батальон/полк без средств связи, управления, наведения огня, при этом превратив всю имеющуюся технику противника в груду бесполезного металлолома. Кроме как сдаться и отдать наступающим подразделениям российской армии тяжёлое вооружение в качестве трофеев, вариантов, по сути, не остаётся.

«Глушилка» электроники

Впервые мир увидел реально действующий прототип электромагнитного оружия на выставке вооружений ЛИМА-2001 в Малайзии. Там был представлен экспортный вариант отечественного комплекса «Ранец-E». Он выполнен на шасси МАЗ-543, имеет массу около 5 тонн, обеспечивает гарантированное поражение электроники наземной цели, летательного аппарата или управляемого боеприпаса на дальностях до 14 километров и нарушения в её работе на расстоянии до 40 км.

Несмотря на то, что первенец произвёл настоящий фурор в мировых СМИ, специалисты отметили ряд его недостатков. Во-первых, размер эффективно поражаемой цели не превышает 30 метров в диаметре, а, во-вторых, оружие одноразовое - перезарядка занимает более 20 минут, за которые чудо-пушку уже раз 15 подстрелят с воздуха, а работать по целям она может только на открытой местности, без малейших визуальных преград.

Наверное, именно по этим причинам американцы и отказались от создания подобного ЭМИ-оружия направленного действия, сконцентрировавшись на лазерных технологиях. Наши оружейники решили испытать судьбу и попытаться «довести до ума» технологию направленного ЭМИ-излучения.

Специалист концерна «Ростех», по понятным причинам не пожелавший раскрыть своего имени, в интервью «Эксперт Online» высказал мнение, что электромагнитное импульсное оружие - уже реальность, однако вся проблема заключена в способах его доставки до цели. «У нас есть в работе проект разработки комплекса радиоэлектронной борьбы с грифом секретности «ОВ» под названием «Алабуга». Это ракета, боевым блоком которой является высокочастотный генератор электромагнитного поля большой мощности.

По активному импульсному излучению получается подобие ядерного взрыва, только без радиоактивной компоненты. Полевые испытания показали высокую эффективность блока - не только радиоэлектронная, но и обычная электронная аппаратура проводной архитектуры, выходит из строя в радиусе 3,5 км. Т.е. не только выводит из штатной эксплуатации главные гарнитуры связи, ослепляя и оглушая противника, но и фактически оставляет целое подразделение без каких-либо локальных электронных систем управления, в том числе вооружением.

Преимущества такого «нелетального» поражения очевидны - противнику останется только сдаться, а технику можно получить в качестве трофея. Проблема лишь в эффективных средствах доставки этого заряда - он обладает сравнительно большой массой и ракета должна быть достаточно большой, и, как следствие, весьма уязвимой для поражения средств ПВО/ПРО», - объяснил эксперт.

Интересны разработки НИИРП (ныне подразделение концерна ПВО «Алмаз-Антей») и Физико-технического института им. Иоффе. Исследуя воздействие мощного СВЧ-излучения с земли на воздушные объекты (цели), специалисты этих учреждений неожиданно получили локальные плазменные образования, которые получались на пересечении потоков излучения от нескольких источников.

При контакте с этими образованиями воздушные цели претерпевали огромные динамические перегрузки и разрушались. Согласованная работа источников СВЧ-излучения, позволяла быстро менять точку фокусировки, то есть производить перенацеливание с огромной скоростью или сопровождать объекты практически любых аэродинамических характеристик. Опыты показали, что воздействие эффективно даже по боевым блокам МБР. По сути, это уже даже не СВЧ-оружие, а боевые плазмоиды.

К сожалению, когда в 1993 году коллектив авторов представил проект системы ПВО/ПРО, основанной на этих принципах, на рассмотрение государства, Борис Ельцин сразу предложил совместную разработку американскому президенту. И хотя сотрудничество по проекту не состоялось, возможно, именно это подтолкнуло американцев к созданию на Аляске комплекса HAARP (High freguencu Active Auroral Research Program) - научно-исследовательский проект по изучению ионосферы и полярных сияний. Отметим, что тот мирный проект почему-то имеет финансирование агентства DARPA Пентагона.

Уже поступает на вооружение российской армии

Чтобы понять, какое место занимает тема радиоэлектронной борьбы в военно-технической стратегии российского военного ведомства, достаточно посмотреть Госпрограмму вооружений до 2020 года. Из 21 трлн. рублей общего бюджета ГПВ, 3,2 трлн. (около 15%) планируется направить на разработку и производство систем нападения и защиты, использующих источники электромагнитного излучения. Для сравнения, в бюджете Пентагона, по оценке экспертов, эта доля значительно меньше - до 10%.

Теперь давайте посмотрим на то, что уже сейчас можно «пощупать», т.е. те изделия, которые дошли до серии и поступили на вооружение за последние несколько лет.

Мобильные комплексы радиоэлектронной борьбы «Красуха-4» подавляют спутники-шпионы, наземные радары и авиационные системы АВАКС, полностью закрывает от радиолокационного обнаружения на 150-300 км, а также может нанести радиолокационное поражение вражеским средствам РЭБ и связи. Работа комплекса основывается на создании мощных помех на основных частотах радаров и прочих радиоизлучающих источников. Предприятие-изготовитель: ОАО «Брянский электромеханический завод» (БЭМЗ).

Средство радиоэлектронной борьбы морского базирования ТК-25Э обеспечивает эффективную защиту кораблей различного класса. Комплекс предназначен для обеспечения радиоэлектронной защиты объекта от радиоуправляемого оружия воздушного и корабельного базирования, путём создания активных помех. Предусмотрено сопряжение комплекса с различными системами защищаемого объекта, такими как навигационный комплекс, радиолокационная станция, автоматизированная система боевого управления.

Аппаратура ТК-25Э обеспечивает создание различных видов помех с шириной спектра от 64 до 2000 МГц, а также импульсных дезинформирующих и имитационных помех с использованием копий сигналов. Комплекс способен одновременно анализировать до 256 целей. Оснащение защищаемого объекта комплексом ТК-25Э в три и более раз снижает вероятность его поражения.

Многофункциональный комплекс «Ртуть-БМ» разработан и выпускается на предприятиях КРЭТ с 2011 года и является одной из наиболее современных систем РЭБ. Основное назначение станции - защита живой силы и техники от одиночного и залпового огня артиллерийских боеприпасов, оснащённых радиовзрывателями. Предприятие-разработчик: ОАО «Всероссийский научно-исследовательский институт «Градиент» (ВНИИ «Градиент»). Аналогичные устройства производит Минское «КБ РАДАР».

Отметим, что радиовзрывателями сейчас оснащены до 80% западных снарядов полевой артиллерии, мин и неуправляемых реактивных снарядов и почти все высокоточные боеприпасы, эти достаточно простые средства позволяют защитить от поражения войска в т. ч. непосредственно в зоне контакта с противником.

Концерн «Созвездие» производит серию малогабаритных (носимых, возимых, автономных) передатчиков помех серии РП-377. С их помощью можно глушить сигналы GPS, а в автономном варианте, укомплектованном источниками питания, ещё и расставив передатчики на некоторой площади, ограниченной только количеством передатчиков.

Сейчас готовится экспортный вариант более мощной системы подавления GPS и каналов управления оружием. Она уже является системой объектовой и площадной защиты от высокоточных средств поражения. Построена она по модульному принципу, который позволяет варьировать площади и объекты защиты.

Из несекретных разработок известны также изделия МНИРТИ - «Снайпер-М», «И-140/64» и «Гигаватт», выполненные на базе автомобильных прицепов. Они, в частности, используются для отработки средств защиты радиотехнических и цифровых систем военного, специального и гражданского назначения от поражения ЭМИ.

Ликбез

Элементная база РЭС весьма чувствительна к энергетическим перегрузкам, и поток электромагнитной энергии достаточно высокой плотности способен выжечь полупроводниковые переходы, полностью или частично нарушив их нормальное функционирование.

Низкочастотное ЭМО создаёт электромагнитное импульсное излучение на частотах ниже 1 МГц, высокочастотное ЭМО воздействует излучением СВЧ-диапазона - как импульсным, так и непрерывным. Низкочастотное ЭМО воздействует на объект через наводки на проводную инфраструктуру, включая телефонные линии, кабели внешнего питания, подачи и съема информации. Высокочастотное ЭМО напрямую проникает в радиоэлектронную аппаратуру объекта через его антенную систему.

Помимо воздействия на РЭС противника, высокочастотное ЭМО может также влиять на кожные покровы и внутренние органы человека. При этом в результате их нагрева в организме возможны хромосомные и генетические изменения, активация и дезактивация вирусов, трансформация иммунологических и поведенческих реакций.

Главным техническим средством получения мощных электромагнитных импульсов, составляющих основу низкочастотного ЭМО, является генератор с взрывным сжатием магнитного поля. Другим потенциальным типом источника низкочастотной магнитной энергии высокого уровня может быть магнитодинамический генератор, приводимый в действие с помощью ракетного топлива или взрывчатого вещества.

При реализации высокочастотного ЭМО в качестве генератора мощного СВЧ-излучения могут использоваться такие электронные приборы, как широкополосные магнетроны и клистроны, работающие в миллиметровом диапазоне гиротроны, генераторы с виртуальным катодом (виркаторы), использующие сантиметровый диапазон, лазеры на свободных электронах и широкополосные плазменно-лучевые генераторы.

Электромагнитное оружие, ЕМИ

Электромагнитное ружьё «Ангара», тест

Электронная бомба - фантастическое оружие России

Идея использования электрической энергии для стрельбы не является изобретением последних десятилетий. Принцип метания снаряда с помощью катушечной электромагнитной пушки был изобретен в 1895 г. австрийским инженером, представителем венской школы пионеров космонавтики Францем Оскаром Лео-Эльдером фон Гефтом. Будучи еще студентом, Гефт «заболел» космонавтикой. Под влиянием романа Жюля Верна «С Земли на Луну» он начал с проекта пушки, с помощью которой можно запускать космические корабли на Луну. Гефт понимал, что огромные ускорения порохового орудия запрещают применять вариант французского фантаста, и предложил электрическую пушку: в соленоиде-стволе при протекании электрического тока возникает магнитное поле, которое разгоняет ферромагнитный снаряд, «втягивая» его вовнутрь соленоида, при этом снаряд разгоняется более плавно. Проект Гефта так и остался проектом — реализовать его на практике тогда не представлялось возможным. Впоследствии такое устройство было названо пушкой Гаусса (Gauss gun) по имени немецкого ученого Карла Фридриха Гаусса, заложившего основы математической теории электромагнетизма.

В 1901 г. профессор физики университета Осло Кристиан Олаф Берхард Биркеланд получил патент Норвегии № 11201 на «новый метод выстреливания снарядов с помощью электромагнитных сил» (на электромагнитную пушку Гаусса). Эта пушка предназначалась для стрельбы по наземным целям. В том же году Биркеланд построил свою первую пушку Гаусса с длиной ствола 1 м. При помощи этой пушки ему удалось в 1901-1902 гг. разогнать снаряд массой 500 г до скорости 50 м/с. Расчетная дальность стрельбы при этом была не более 1 000 м (результат достаточно слабый даже для начала ХХ в.). С помощью второй большой пушки (калибр 65 мм, длина ствола 3 м), построенной в 1903 г., Биркеланд разогнал снаряд до скорости примерно 100 м/с, при этом снаряд пробивал насквозь деревянную доску толщиной 5 дюймов (12,7 см) (стрельба происходила в помещении). В настоящее время эта пушка (рис. 1) выставлена в музее Университета Осло. Следует сказать, что созданием этой пушки Биркеланд занялся в целях получения значительных финансовых средств, необходимых ему для проведения научных исследований в области такого явления, как северное сияние. Стремясь продать свое изобретение, Биркеланд устроил для общественности и заинтересованных лиц демонстрацию этой пушки в действии в университете Осло. Увы, испытания не удались, поскольку короткое электрическое замыкание в пушке вызвало пожар и выход ее из строя. После возникшего переполоха уже никто не хотел приобретать ни пушку, ни патент. Пушку можно было бы отремонтировать, но Биркеланд отказался от дальнейшего проведения работ в этом направлении и совместно с инженером Эйде занялся производством искусственных минеральных удобрений, принесших ему средства, необходимые для научных исследований.

В 1915 г. русские инженеры Н. Подольский и М. Ямпольский создали проект сверхдальнобойной пушки (магнито-фугального орудия) с дальностью стрельбы 300 км. Длина ствола пушки планировалась около 50 м, начальная скорость снаряда 915 м/с. Дальше проекта дело не пошло. Проект был отклонен Артиллерийским комитетом Главного артиллерийского управления Российской императорской армии, посчитавшим, что время для подобных проектов еще не пришло. Одна из причин отказа — сложность создания мощной передвижной электростанции, которая всегда бы находилась рядом с пушкой.

Какова же должна была быть мощность такой электростанции? Для метания, например, снаряда из 76-миллиметровой огнестрельной пушки затрачивается огромная энергия в 113 000 кгм, т. е. 250 000 л. с. Именно такая энергия необходима для стрельбы из 76-миллиметровой неогнестрельной пушки (например, электрической) для метания снаряда на такое же расстояние. Но при этом неизбежны существенные потери энергии, составляющие не менее 50 %. Следовательно, мощность электрической пушки составляла бы никак не менее 500 000 л. с., а это мощность огромной электростанции. Кроме того, для сообщения снаряду этой огромной энергии в ничтожно малый промежуток времени нужен ток огромной силы, который практически равен току короткого замыкания. Для увеличения времени действия тока необходимо удлинять ствол электрического орудия, иначе не разогнать снаряд до необходимой скорости. В этом случае длина ствола может составить 100 и более метров.

В 1916 г. французский изобретатель Андре Луи Октав Фашон Виллепле создал модель электромагнитной пушки. Используя в качестве ствола цепочку катушексоленоидов, на которые последовательно подавалось напряжение, его действующая модель успешно разогнала снаряд массой 50 г до скорости 200 м/с. По сравнению с настоящими артиллерийскими установками результат получился достаточно скромным, но продемонстрировал принципиально новую возможность создания оружия, в котором снаряд разгоняется без помощи пороховых газов. Однако на этом все остановилось, поскольку создать полноразмерный экземпляр не представлялось возможным из-за огромных технических сложностей предстоящих работ и их высокой стоимости. На рис. 2 показан эскиз этой непостроенной электромагнитной пушки.

Далее выяснилось, что при прохождении ферромагнитного снаряда через соленоид на его концах образуются полюса, симметричные полюсам соленоида, из-за чего после прохождения центра соленоида снаряд, в соответствии с законом магнитных полюсов, начинает тормозиться. Это повлекло за собой изменение временной диаграммы тока в соленоиде, а именно: в момент подхода снаряда к центру соленоида питание переключается на следующий соленоид.

В 30-е гг. XX в. немецкий конструктор и пропагандист межпланетных полетов Макс Валье предложил оригинальную идею кольцевого электроускорителя, целиком состоящего из соленоидов (своего рода предок современного адронного коллайдера), в котором снаряд теоретически мог разгоняться до огромных скоростей. Затем переключением «стрелки» снаряд должен был направляться в трубу определенной длины, расположенную по касательной относительно основного кольца электроускорителя. Из этой трубы-ствола снаряд вылетал бы как из пушки. Так можно было бы запускать спутники Земли. Однако на то время уровень науки и техники не позволял изготовить такой электроускоритель-пушку.

В 1934 г. американский изобретатель Вирджил Ригсби из Сан-Антонио, Техас, изготовил два работающих электромагнитных пулемета и получил патент США № 1959737 на автоматическую электрическую пушку.

Первая модель получала энергию от обычного автомобильного аккумулятора и с использованием 17 электромагнитов разгоняла пули по 33-дюймовому стволу. Имеющийся в составе управляемый распределитель переключал напряжение питания с предыдущей катушки электромагнита на последующую катушку (по ходу движения пули) таким образом, чтобы вытягивающее магнитное поле всегда обгоняло пулю.

Вторая модель пулемета (рис. 3) выстреливала пули 22 калибра со скоростью 121 м/с. Заявленная скорострельность пулемета составляла 600 выстр./ мин, правда, на демонстрации пулемет стрелял со скоростью 7 выстр./мин. Причиной такой стрельбы, вероятно, была недостаточная мощность источника питания. Американские военные к электромагнитному пулемету остались равнодушны.

В 20-е и 30-е гг. прошлого столетия в СССР разработкой новых видов артиллерийского вооружения занималась КОСАРТОП — Комиссия особых артиллерийских опытов, причем в ее планах был проект создания электрического орудия на постоянном токе. Восторженным сторонником нового артиллерийского вооружения был Михаил Николаевич Тухачевский, впоследствии, с 1935 г., маршал Советского Союза. Однако расчеты, сделанные специалистами, показали, что такое орудие создать можно, но оно будет иметь очень большие размеры, а главное потребует так много электроэнергии, что рядом с ним придется иметь собственную электростанцию. Вскоре КОСАРТОП была распущена, и работы по созданию электрического орудия прекратились.

Во время Второй мировой войны в Японии разработали и построили пушку Гаусса, с помощью которой разогнали снаряд до скорости 335 м/с. По окончании войны американские ученые исследовали эту установку: снаряд массой 86 г удалось разогнать только до скорости 200 м/с. В результате выполненных исследований определились достоинства и недостатки пушки Гаусса.

Пушка Гаусса в качестве оружия обладает преимуществами, которыми не обладают другие виды оружия, в том числе стрелковое, а именно: отсутствие гильз, возможность бесшумного выстрела, если скорость снаряда не превышает скорости звука; относительно малая отдача, равная импульсу вылетевшего снаряда, отсутствие дополнительного импульса от пороховых газов или движущихся частей оружия, теоретически большая надежность и износоустойчивость, а также возможность использования в любых условиях, в том числе и в космическом пространстве. Однако, несмотря на кажущуюся простоту пушки Гаусса и перечисленные выше преимущества, использование ее в качестве орудия сопряжено с серьезными трудностями.

Во-первых, это большой расход энергии и, соответственно, низкий КПД установки. Лишь от 1 до 7 % заряда конденсатора переходит в кинетическую энергию снаряда. Частично этот недостаток можно компенсировать использованием многоступенчатой системы разгона снаряда, но в любом случае КПД не превышает 25 %.

Во-вторых, это большие вес и габариты установки при ее низкой эффективности.

Следует отметить, что в первой половине XX в. параллельно с развитием теории и практики пушки Гаусса развивалось и другое направление в создании электромагнитного баллистического оружия, использующее силу, возникающую при взаимодействии магнитного поля и электрического тока (силу Ампера).

Патент № 1370200 Андре Фашон-Виллепле

31 июля 1917 г. уже упоминавшийся раннее французский изобретатель Фашон-Виллепле подал в патентное ведомство США заявку на «Электрическую пушку или аппарат для продвижения вперед снарядов» и 1 марта 1921 г. получил на это устройство патент № 1370200. Конструктивно пушка представляла собой два параллельных медных рельса, помещенных внутри ствола из немагнитного материала. Ствол проходил через центры нескольких одинаковых электромагнитных блоков (ЭМБ), размещенных вдоль него с определенным интервалом. Каждый такой блок представлял собой Ш-образный сердечник, набранный из листов электротехнической стали, замкнутый перемычкой из того же материала, с обмотками, размещенными на крайних стержнях. Центральный стержень имел зазор в центре блока, в который и помещался ствол пушки. Оперенный снаряд помещался на рельсы. При включении аппарата ток от положительного полюса источника постоянного напряжения питания проходил через левый рельс, снаряд (слева направо), правый рельс, контакт включения ЭМБ, замкнутый крылом снаряда, катушки ЭМБ и возвращался к отрицательному полюсу источника питания. При этом в среднем стержне ЭМБ вектор магнитной индукции имеет направление сверху вниз. Взаимодействие этого магнитного потока и электрического тока, протекающего через снаряд, создает силу, приложенную к снаряду и направленную от нас, — силу Ампера (в соответствии с правилом левой руки). Под действием этой силы снаряд и получает ускорение. После вылета снаряда из первого ЭМБ его контакт включения выключается, а при подлете снаряда ко второму ЭМБ, контакт включения этого блока крылом снаряда включается, создается очередной импульс силы и т. д.

Во время Второй мировой войны в нацистской Германии идея Фашон-Виллепле была подхвачена Иохимом Ханслером, сотрудником министерства вооружений. В 1944 г. он спроектировал и изготовил 10-мм пушку LM-2. Во время ее испытаний 10-граммовый алюминиевый «снаряд» удалось разогнать до скорости 1,08 км/с. На основе этой разработки Люфтваффе было подготовлено техническое задание на электрическую зенитную пушку. Начальную скорость снаряда, содержащего 0,5 кг взрывчатки, требовалось обеспечить 2,0 км/с, скорострельность при этом должна была быть 6-12 выстр./мин. В серию данная пушка пойти не успела — под ударами союзников Германия терпела сокрушительное поражение. Впоследствии опытный образец и проектная документация попали в руки американских военных. По результатам проведенных ими испытаний в 1947 г. было сделано заключение: для нормального функционирования пушки требовалась энергия, которой можно было осветить половину Чикаго.

Полученные результаты испытаний пушек Гаусса и Ханслера привели к тому, что в 1957 г. ученые — участники симпозиума по сверхскоростным ударам, проводимого ВВС США, пришли к следующему заключению: «…. маловероятно, что в ближайшем будущем техника электромагнитных пушек будет успешна».

Тем не менее, несмотря на отсутствие серьезных практических результатов, удовлетворяющих требованиям военных, многие ученые и инженеры не согласились с этими выводами и продолжили исследования в области создания электромагнитного баллистического оружия.

Шинные электромагнитные ускорители плазмы

Следующий шаг в развитии электромагнитного баллистического оружия был сделан в результате создания шинных электромагнитных ускорителей плазмы. Греческое слово plasma обозначает нечто вылепленное. Термин «плазма» в физике был введен в 1924 г. американским ученым Ирвингом Лангмюром, изучавшим свойства ионизированного газа в связи с работами по новым источникам света.

В 1954-1956 гг. в США профессор Уинстон Х. Бостик, работая в Ливерморской национальной лаборатории им Э. Лоуренса, входящей в состав Калифорнийского университета, изучал «запакованные» в магнитное поле плазмы, полученные с помощью специальной «плазменной» пушки. Эта «пушка» состояла из стеклянного закрытого цилиндра диаметром четыре дюйма, внутри которого были установлены параллельно два электрода из титана, насыщенного тяжелым водородом. Воздух из сосуда был удален. В состав устройства также входил источник внешнего постоянного магнитного поля, вектор индукции магнитного потока которого имел направление перпендикулярное плоскости электродов. Один из этих электродов был подключен через циклический выключатель к одному полюсу высоковольтного многоамперного источника постоянного тока, а второй электрод — к другому полюсу этого же источника. При включении циклического выключателя в зазоре между электродами возникает пульсирующая электрическая дуга, сила тока в которой достигает нескольких тысяч ампер; продолжительность каждой пульсации примерно 0,5 мкс. При этом с обоих электродов как бы испаряются ионы дейтерия и электроны. Образовавшийся сгусток плазмы, замыкает электрический контур между электродами и под действием пондеромоторной силы разгоняется и стекает с концов электродов, преобразуясь при этом в кольцо — тороид плазмы, так называемый плазмоид; это кольцо выталкивается вперед со скоростью, достигающей 200 км/с.

Исторической справедливости ради следует отметить, что в Советском Союзе еще в 1941- 1942 гг. в блокадном Ленинграде профессор Георгий Ильич Бабат создал высокочастотный трансформатор, вторичной обмоткой которого служили не витки проволоки, а кольцо ионизированного газа, плазмоид. В начале 1957 г. в СССР молодой ученый Алексей Иванович Морозов опубликовал в журнале экспериментальной и теоретической физики, ЖЭТФ, статью «Об ускорении плазмы магнитным полем», теоретически рассмотрев в ней процесс ускорения магнитным полем струи плазмы, по которой протекает ток в вакууме, а спустя полгода в этом же журнале была опубликована статья академика АН СССР Льва Андреевича Арцимовича и его сотрудников «Электродинамическое ускорение сгустков плазмы», в которой они предлагают использовать собственное магнитное поле электродов для разгона плазмы. В выполненном ими эксперименте электрический контур состоял из конденсаторной батареи 75 мкФ, подключенной через шаровой разрядник к массивным медным электродам («рельсам»). Последние были помещены в стеклянную цилиндрическую камеру, находящуюся под непрерывной откачкой. Предварительно поперек «рельсов» была положена тонкая металлическая проволочка. Вакуум в разрядной камере в момент времени, предшествующий эксперименту, составлял 1-2×10 -6 мм рт. ст.

При подаче напряжения 30 кВ на «рельсы» проволочка взрывалась, образовавшаяся плазма продолжала перемыкать «рельсы», и в контуре протекал большой ток.

Как известно, направление линий магнитного поля определяется по правилу правого буравчика: если ток течет в направлении от наблюдателя, линии поля направлены по часовой стрелке. В результате между рельсами создается общее однонаправленное магнитное поле, вектор индукции магнитного потока которого направлен перпендикулярно плоскости, в которой находятся рельсы. На ток, протекающий через плазму и находящийся в этом поле, действует сила Ампера, направление которой определяется правилом левой руки: если расположить руку по направлению течения тока так, чтобы линии магнитного поля входили в ладонь, большой палец укажет направление силы. В результате плазма разгонится вдоль рельсов (так же разгонялся бы и металлический проводник или снаряд, скользящий по рельсам). Максимальная скорость движения плазмы на расстоянии 30 см от начального положения проволочки, полученная из обработки сверхскоростных фотографических измерений, составила 120 км/с. Собственно говоря, это как раз та схема ускорителя, которую сейчас принято называть рельсотроном , в английской терминологии — railgun, принцип действия которого показан на рис. 4, где 1 — рельс, 2 — снаряд, 3 — сила, 4 — магнитное поле, 5 — электрический ток.

Однако длительное время речь не шла о том, чтобы поставить на рельсы снаряд и сделать из рельсотрона оружие. Для реализации этой идеи нужно было решить ряд задач:

  • создать низкоомный малоиндуктивный источник постоянного напряжения питания максимально возможной мощности;
  • разработать требования к длительности и форме разгонного импульса тока и ко всей системе рельсотрона в целом, обеспечивающие эффективное ускорение снаряда и высокий КПД преобразования электромагнитной энергии в кинетическую энергию снаряда, и реализовать их;
  • разработать такую пару «рельсы — снаряд», которая, обладая максимальной электрической проводимостью, сможет выдержать тепловой удар, возникающий при выстреле, от протекания тока и трения снаряда о рельсы;
  • разработать такую конструкцию рельсотрона, которая выдерживала бы воздействие на рельсы сил Ампера, связанных с протеканием через них гигантского тока (под действием этих сил рельсы стремятся «разбежаться» друг от друга).

Главным, конечно, было отсутствие необходимого источника питания, и такой источник появился. Но об этом в окончании статьи.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Sp-force-hide { display: none;}.sp-form { display: block; background: #ffffff; padding: 15px; width: 960px; max-width: 100%; border-radius: 5px; -moz-border-radius: 5px; -webkit-border-radius: 5px; border-color: #dddddd; border-style: solid; border-width: 1px; font-family: Arial, "Helvetica Neue", sans-serif; background-repeat: no-repeat; background-position: center; background-size: auto;}.sp-form input { display: inline-block; opacity: 1; visibility: visible;}.sp-form .sp-form-fields-wrapper { margin: 0 auto; width: 930px;}.sp-form .sp-form-control { background: #ffffff; border-color: #cccccc; border-style: solid; border-width: 1px; font-size: 15px; padding-left: 8.75px; padding-right: 8.75px; border-radius: 4px; -moz-border-radius: 4px; -webkit-border-radius: 4px; height: 35px; width: 100%;}.sp-form .sp-field label { color: #444444; font-size: 13px; font-style: normal; font-weight: bold;}.sp-form .sp-button { border-radius: 4px; -moz-border-radius: 4px; -webkit-border-radius: 4px; background-color: #0089bf; color: #ffffff; width: auto; font-weight: 700; font-style: normal; font-family: Arial, sans-serif;}.sp-form .sp-button-container { text-align: left;}

В первом случае магнитное поле используется как альтернатива взрывчатым веществам в огнестрельном оружии. Во втором - используется возможность наведения токов высокого напряжения и выведения из строя электрического и электронного оборудования в результате возникающего перенапряжения, либо вызывание болевых эффектов или иных эффектов у человека. Оружие второго типа позиционируется как безопасное для людей и служащее для вывода из строя техники противника или приводящих к небоеспособности живой силы противника; относится к категории оружия нелетального действия.

Французская кораблестроительная компания «DCNS» разрабатывает программу «Advansea » в ходе которой планируется создать к 2025 году полностью электрифицированный боевой надводный корабль с лазерным и электромагнитным вооружением.


Wikimedia Foundation . 2010 .

  • Менгден, Георг фон
  • Майами

Смотреть что такое "Электромагнитное оружие" в других словарях:

    ЭЛЕКТРОМАГНИТНОЕ ОРУЖИЕ - (микроволновое оружие), мощный электронный импульс, накрывающий площадь в радиусе 50 км от центра применения. Проникает внутрь строений через швы и трещины в отделке. Повреждает ключевые элементы электрических схем, приводя всю систему в… … Энциклопедический словарь

    ЭЛЕКТРОМАГНИТНОЕ ОРУЖИЕ - ЭЛЕКТРОМАГНИТНОЕ (МИКРОВОЛНОВОЕ) ОРУЖИЕ мощный электронный импульс, накрывающий площадь в радиусе 50 км от центра применения. Проникает внутрь строений через швы и трещины в отделке. Повреждает ключевые элементы электрических схем, приводя всю… … Большой Энциклопедический словарь

    ЭЛЕКТРОМАГНИТНОЕ ОРУЖИЕ - оружие, поражающим фактором к рого является мощный, обычно импульсный, поток эл. магн. волн радиочастотного (см. Сверхвысокочастотное оружие), когерентного оптич. (см. Лазерное оружие) и некогерентного оптич. (см.… … Энциклопедия РВСН

    Оружие направленной энергии - (англ. Directed energy weapon, DEW) оружие, излучающее энергию в заданном направлении без использования проводов, дротиков и других проводников, для достижения летального или нелетального эффекта. Данный вид вооружения существует, но… … Википедия

    Оружие нелетального действия - Оружие нелетального (несмертельного) действия (ОНД) условно называемое в средствах массовой информации «гуманным», это вооружение предназначено для уничтожения техники, а также временного вывода из строя живой силы противника, без причинения… … Википедия

    Оружие на новых физических принципах - (нетрадиционное оружие) новые виды оружия, поражающее действие которых основывается на ранее не использовавшихся в оружии процессах и явлениях. К концу 20 в. в различных стадиях исследований и разработки находились генетическое оружие,… …

    - (нелетальное) специальные виды оружия, способные кратковременно или на длительный срок лишать противника возможности вести боевые действия без нанесения ему безвозвратных потерь. Предназначаются для тех случаев, когда применение оружия обычного,… … Словарь черезвычайных ситуаций

    ОРУЖИЕ НЕСМЕРТЕЛЬНОГО ДЕЙСТВИЯ - специальные виды оружия, способные кратковременно или на длительный срок лишать противника возможности вести боевые действия без нанесения ему безвозвратных потерь. Предназначается для тех случаев, когда применение обычного оружия, а тем более… … Юридическая энциклопедия

    Оружие - У этого термина существуют и другие значения, см. Оружие … Википедия

    Оружие несмертельного действия - Экспериментальное лазерное оружие (PHASR), временно ослепляющее противника Оружие несмертельного действия, или оружие нелетального действия (ОНД) оружие, которое при обычном применении не должно приводить к гибели или серьёзным травмам у… … Википедия

    Используется непосредственно для поражения цели.

    В первом случае магнитное поле используется как альтернатива взрывчатым веществам в огнестрельном оружии. Во втором - используется возможность наведения токов высокого напряжения и выведения из строя электрического и электронного оборудования в результате возникающего перенапряжения, либо вызывание болевых эффектов или иных эффектов у человека. Оружие второго типа позиционируется как безопасное для людей и служащее для вывода из строя техники противника или приводящих к небоеспособности живой силы противника.; относится к категории оружия нелетального действия.

    Французская кораблестроительная компания «DCNS » разрабатывает программу «Advansea » в ходе которой планируется создать к 2025 году полностью электрифицированный боевой надводный корабль с лазерным и электромагнитным вооружением.

    Виды электромагнитного оружия

    Поражение ЭМИ-оружием ракет и высокоточных боеприпасов

    • противорадиолокационные ракеты с собственными радарами поиска РЛС;
    • ПТРК 2-го поколения с управлением по не экранированному проводу (TOW или Фагот);
    • ракеты с собственными активными радарами поиска бронетехники (Brimstone , JAGM, AGM-114L Longbow Hellfire);
    • ракеты с управлением по радиоканалу (TOW Aero, Хризантема);
    • высокоточные бомбы с простыми приёмниками GPS-навигации;
    • планирущие боеприпасы с собственными радарами (SADARM) .

    Использование электромагнитного импульса против электроники ракеты за её металлическим корпусом неэффективно. Воздействие возможно по большей части на головку самонаведения, которое может быть велико в основном для ракет с собственным радаром в её качестве.

    Электромагнитное оружие применяется для поражения ракет в комплексе активной защиты «Афганит » из танковой платформы Армата и боевом ЭМИ-генераторе Ранец-Е.

    Поражение ЭМИ-оружием средств ведения партизанских войн

    ЭМИ эффективны против средств ведения партизанских войн, так как бытовая электроника не имеет защиты от ЭМИ.

    Наиболее типичные объекты поражения ЭМИ:

    • радиомины и мины с электронными взрывателями, включая традиционные любительские радиоустройства для террористических и диверсионных акций;
    • незащищённые от ЭМИ портативные устройства радиосвязи пехоты;
    • бытовые радиостанции, сотовые телефоны, планшеты, ноутбуки, электронные охотничьи прицелы и тому подобные электронные бытовые приборы.

    Защита от ЭМИ оружия

    Существует много эффективных средств защиты радаров и электроники от ЭМИ-оружия.

    Меры применяются трех категорий:

    1. блокирование входа части энергии электромагнитного импульса
    2. подавление индукционных токов внутри электрических схем быстрым их размыканием
    3. использование электронных устройств нечувствительных к ЭМИ

    Средства сброса части или всех энергии ЭМИ на входе в устройство

    Как средства защиты от ЭМИ на АФАР радары накладывают «клетки Фарадея » отсекающей ЭМИ за пределами их частот. Для внутренней электроники применяются просто железные экраны.

    Кроме этого может быть использован разрядник, как средство сброса энергии сразу за антенной.

    Средства размыкания цепей при возникновении сильных индукционных токов

    Для размыкания цепей внутренней электроники при возникновении сильных индукционных токов от ЭМИ используют

    • стабилитроны - полупроводниковые диоды рассчитанные на работу в режиме пробоя с резким повышением сопротивления;

    В свое время такое устройство, как винтовка Гаусса, получило большое распространение в среде писателей-фантастов и разработчиков компьютерных игр. Ее часто применяют непобедимые герои романов, и именно она обычно является в компьютерных играх. Однако на самом деле винтовка Гаусса практически не нашла применения в современном мире, и это связанно в основном с особенностями ее конструкции.

    Дело в том, что в основе действия такой винтовки - принцип ускорения массы на основе бегущего магнитного поля. Для этого используют соленоид, в который помещают ствол винтовки, причем он должен быть изготовлен из диэлектрика. Снаряды же винтовка Гаусса использует только те, что изготовлены из ферромагнетика. Таким образом, при подаче тока на соленоид в нем появляется которое притягивает снаряд внутрь. При этом импульс должен быть очень мощным и кратковременным (чтобы "разогнать" снаряд до и при этом не затормозить его внутри соленоида).

    Такой принцип действия дает модели преимущества, которые недоступны для многих других видов стрелкового вооружения. Она не требует наличия гильз, отличается небольшой отдачей, которая равна импульсу вылетающего снаряда, обладает большим потенциалом бесшумной стрельбы (при наличии достаточно обтекаемых снарядов, начальная скорость которых не будет превышать При этом такая винтовка дает возможность вести стрельбу практически в любых условиях (как говорят, даже в открытом космосе).

    И, конечно же, множество "умельцев" ценят то, что винтовка Гаусса своими руками в домашних условиях вполне может быть собрана фактически "из ничего".

    Однако некоторые конструктивные особенности и принципы действия, которые характерны для такого изделия, как Гаусс-винтовка, имеют и отрицательные стороны. Самая главная из них - низкий КПД, который использует от 1 до 10 процентов энергии, переданной конденсатором на соленоид. При этом множественные попытки исправить этот недостаток не принесли существенного результата, а только повысили КПД модели до 27%. Все остальные недостатки, которые имеет винтовка Гаусса, вытекают именно из маленького КПД. Винтовке требуется большое количество энергии для эффективной работы, также она имеет громоздкий вид, большие габариты и вес, а процесс перезарядки довольно длителен.

    Выходит, что недостатки такого как винтовка Гаусса, перекрывают большую часть его достоинств. Возможно, с изобретением сверхпроводников, которые можно будет отнести к классу высокотемпературных, и появлением компактных и мощных источников питания это оружие снова привлечет внимание ученых и военных. Хотя большинством практиков считается, что к этому времени будут существовать другие типы оружия, намного превосходящие винтовку Гаусса.

    Единственной областью применения данного вида оружия, рентабельной уже в наше время, являются космические программы. Правительства большинства космических держав планировали использовать винтовку Гаусса для установки на космических шаттлах или спутниках.

    Когда говорят об электромагнитном оружии, чаще всего имеют в виду выведение из строя электрического и электронного оборудования наведением на него электромагнитных импульсов (ЭМИ). Действительно, возникающие в результате мощного импульса в цепях электроники токи и напряжение, приводят к её выходу из строя. И чем больше его мощность, тем на большем расстоянии приходят в негодность любые «признаки цивилизации».

    Одним из самых мощных источников ЭМИ является ядерное оружие. Например, американское ядерное испытание в Тихом океане в 1958 году вызвало на Гавайских островах нарушение радио- и телевещания и перебои с освещением, а в Австралии - нарушение радионавигации на 18 часов. В 1962 году, когда на высоте 400 км. американцы взорвали 1,9 Мт заряд – «скончались» 9 спутников, надолго пропала радиосвязь на обширном участке Тихого океана. Поэтому электромагнитный импульс - один из поражающих факторов ядерного оружия.

    Но ядерное оружие применимо только в глобальном конфликте, а возможности ЭМИ очень полезны в более прикладном военном деле. Поэтому неядерные средства поражения ЭМИ начали проектироваться почти сразу вслед за ядерным оружием.

    Конечно, генераторы ЭМИ существуют давно. Но создать достаточно мощный (а значит, «дальнобойный») генератор не так-то просто технически. Ведь, по сути, это прибор, преобразующий электрическую или другую энергию в электромагнитное излучение высокой мощности. И если у ядерного боеприпаса нет проблем с первичной энергетикой, то в случае использования электричества вместе с источниками питания (напряжения) это будет скорее сооружение, чем оружие. В отличие от ядерного заряда, доставить его «в нужное время, в нужное место» более проблематично.

    И вот в начале 90-х стали появляться сообщения о неядерных «электромагнитных бомбах» (E-Bomb). Как всегда, источником стала западная пресса, а поводом – операция американцев против Ирака 1991 года. «Новое секретное супероружие», действительно, применялось для подавления и вывода из строя иракских систем ПВО и связи.

    Однако у нас подобное оружие предлагал ещё в 1950-х годах академик Андрей Сахаров (ещё до того, как стал «миротворцем»). Кстати, на вершине творческой деятельности (которая приходится не на период диссидентства, как многие думают) у него была масса оригинальных идей. Например, в годы войны он был одним из создателей оригинального и надёжного прибора для контроля бронебойных сердечников на патронном заводе.

    А в начале 50-х он предлагал «смыть» восточное побережье США волной гигантского цунами, которую можно инициировать серией мощных морских ядерных взрывов на значительном удалении от берегов. Правда, командование ВМФ, увидев «ядерную торпеду», изготовленную для этой цели, наотрез отказалось принимать её на вооружение из соображений гуманизма - да ещё и наорало на учёного многопалубным фотским матом. По сравнению с этой идеей электромагнитная бомба - действительно «гуманное оружие».

    В предложенном Сахаровым неядерном боеприпасе мощный ЭМИ образовывался в результате сжатия магнитного поля соленоида взрывом обычного взрывчатого вещества. Благодаря высокой плотности химической энергии во взрывчатом веществе это избавляло от необходимости использовать источник электрической энергии для преобразования в ЭМИ. К тому же таким способом можно было получить мощный ЭМИ. Правда, это же делало прибор одноразовым, поскольку он разрушался инициирующим взрывом. У нас этот тип устройств стал называться взрывомагнитным генератором (ВМГ).

    Собственно, до этой же идеи додумались американцы с британцами в конце 70-х годов, в результате чего и появились боеприпасы, испытанные в боевой обстановке в 1991 году. Так что ничего «нового» и «суперсекретного» в этом виде техники нет.

    У нас (а Советский Союз занимал ведущие позиции в области физических исследований) подобные устройства находили применение в сугубо мирных научных и технологических областях - таких, как транспортировка энергии, ускорение заряженных частиц, нагрев плазмы, накачка лазеров, радиолокация высокого разрешения, модификация материалов и т. д. Конечно, велись исследования и в направлении военного применения. Изначально ВМГ использовались в ядерных боеприпасах для систем нейтронного подрыва. Но были и идеи использования «генератора Сахарова» как самостоятельного оружия.

    Но прежде чем говорить о применении ЭМИ-оружия, следует сказать, что Советская Армия готовилась воевать в условиях применения ядерного оружия. То есть в условиях действующего на технику поражающего фактора ЭМИ. Поэтому вся военная техника разрабатывалась с учётом защиты от этого поражающего фактора. Способы различны - начиная от простейшего экранирования и заземления металлических корпусов аппаратуры и заканчивая применением специальных предохранительных устройств, разрядников и устойчивой к ЭМИ архитектурой аппаратуры.

    Так что говорить, будто от этого «чудо-оружия» нет защиты, тоже не стоит. Да и радиус действия у ЭМИ-боеприпасов не такой большой, как в американской прессе - излучение распространяется во всех направлениях от заряда, и плотность его мощности убывает пропорционально квадрату расстояния. Соответственно, убывает и воздействие. Конечно, вблизи точки подрыва защитить технику сложно. Но говорить об эффективном воздействии на километры не приходится – для достаточно мощных боеприпасов это будут десятки метров (что, правда, больше зоны поражения фугасных боеприпасов аналогичного размера). Здесь достоинство такого оружия – оно не требует точечного попадания – обращается в недостаток.

    Со времён «генератора Сахарова» подобные устройства постоянно совершенствовались. Занимались их разработкой множество организаций: Институт высоких температур АН СССР, ЦНИИХМ, МВТУ, ВНИИЭФ и много других. Устройства стали достаточно компактны, чтобы стать боевыми частями средств поражения (от тактических ракет и артиллерийских снарядов до диверсионных средств). Улучшались их характеристики. Кроме взрывчатки, в качестве источника первичной энергии стали использовать ракетное топливо. ВМГ стали применяться как один из каскадов для накачки генераторов СВЧ-диапазона. Несмотря на ограниченные возможности по поражению целей, эти средства занимают промежуточное положение между средствами огневого поражения и средствами радиоэлектронного подавления (которые, по сути, тоже являются электромагнитным оружием).

    О конкретных образцах известно мало. Например, Александр Борисович Прищепенко описывает успешные опыты по срыву атаки противокорабельных ракет П-15 с помощью подрыва компактных ВМГ на дистанциях до 30 метров от ракеты. Это уже, скорее, средство ЭМИ-защиты. Он же описывает «ослепление» магнитных взрывателей противотанковых мин, которые, находясь на дистанции до 50 метров от места подрыва ВМГ, на значительное время переставали срабатывать.

    В качестве ЭМИ-боеприпаса испытывались не то что «бомбы» -- реактивные гранаты для ослепления комплексов активной защиты (КАЗ) танков! В противотанковом гранатомёте РПГ-30 – два ствола: один основной, другой малого диаметра. 42-миллиметровая ракета «Атропус», оснащённая электромагнитной боевой частью, выстреливается в направлении танка чуть ранее кумулятивной гранаты. Ослепив КАЗ, она позволяет последней спокойно полететь мимо «задумавшейся» защиты.

    Немного отвлекаясь, скажу, что это довольно актуальное направление. Придумали КАЗ мы («Дрозд» ставился ещё на Т-55АД). В дальнейшем появились «Арена» и украинский «Заслон». Сканируя окружающее машину пространство (обычно в миллиметровом диапазоне), они отстреливают в направлении подлетающих противотанковых гранат, ракет и даже снарядов небольшие поражающие элементы, способные изменить их траекторию или привести к преждевременной детонации. С оглядкой на наши разработки, на Западе, в Израиле и Юго-восточной Азии тоже стали появляться такие комплексы: «Trophy», «Iron Fist», «EFA», «KAPS», «LEDS-150», «AMAP ADS», «CICS», «SLID» и другие. Сейчас они получают широчайшее распространение и начинают штатно устанавливаться не только на танки, но даже на лёгкие бронемашины. Противодействие им становится неотъемлемой частью борьбы с бронетехникой и защищёнными объектами. А компактные электромагнитные средства подходят для этой цели как нельзя лучше.

    Но вернёмся к электромагнитному оружию. Кроме взрывомагнитных устройств, существуют излучатели ЭМИ направленного и всенаправленного действия, использующие в качестве излучающей части различные антенные устройства. Это уже не одноразовые устройства. Их можно применять на значительном расстоянии. Они делятся на стационарные, мобильные и компактные переносные. Мощные стационарные излучатели ЭМИ большой энергии, требуют строительства специальных сооружений, высоковольтных генераторных установок, антенных устройств больших размеров. Но и возможности их весьма существенны. Передвижные излучатели сверхкоротких ЭМИ с максимальной частотой повторения до 1 кГц, можно размещать в автофургонах или автоприцепах. Они также имеют значительную дальность действия и достаточную для своих задач мощность. Переносные устройства чаще всего используются для различных задач обеспечения безопасности, вывода из строя средств связи, разведки и взрывных устройств на небольших расстояниях.

    О возможностях отечественных мобильных установок можно судить по представленному на выставке вооружений ЛИМА-2001 в Малайзии экспортному варианту комплекса «Ранец-E». Он выполнен на шасси МАЗ-543, имеет массу около 5 тонн, обеспечивает гарантированное поражение электроники наземной цели, летательного аппарата или управляемого боеприпаса на дальностях до 14 километров и нарушения в её работе на расстоянии до 40 км.

    Из несекретных разработок известны также изделия МНИРТИ -- «Снайпер-М» «И-140/64» и «Гигаватт», выполненные на базе автомобильных прицепов. Они, в частности, используются для отработки средств защиты радиотехнических и цифровых систем военного, специального и гражданского назначения от поражения ЭМИ.

    Ещё немного следует сказать о средствах радиоэлектронного противодействия. Тем более, что они тоже относятся к радиочастотному электромагнитному оружию. Это чтобы не создалось впечатления, что мы как-то не способны бороться с высокоточным оружием и «всемогущими беспилотниками и боевыми роботами». Все эти модные и дорогостоящие штуки имеют весьма уязвимое место – электронику. Даже относительно простые средства способны надёжно блокировать сигналы GPS и радиовзрыватели, без которых эти системы не обходятся.

    ВНИИ «Градиент» серийно производит станция помех радиовзрывателям снарядов и ракет СПР-2 «Ртуть-Б», выполненные на базе БТР и штатно состоящие на вооружении. Аналогичные устройства производит Минское «КБ РАДАР». А поскольку радиовзрывателями сейчас оснащены до 80% западных снарядов полевой артиллерии, мин и неуправляемых реактивных снарядов и почти все высокоточные боеприпасы, - эти достаточно простые средства позволяют защитить от поражения войска в т. ч. непосредственно в зоне контакта с противником.

    Концерн «Созвездие» производит серию малогабаритных (носимых, возимых, автономных) передатчиков помех серии РП-377. С их помощью можно глушить сигналы GPS, а в автономном варианте, укомплектованном источниками питания, ещё и расставив передатчики на некоторой площади, ограниченной только количеством передатчиков.

    Сейчас готовится экспортный вариант более мощной системы подавления GPS и каналов управления оружием. Она уже является системой объектовой и площадной защиты от высокоточных средств поражения. Построена она по модульному принципу, который позволяет варьировать площади и объекты защиты. Когда её покажут, каждый уважающий себя бедуин сможет защитить своё поселение от «высокоточных методов демократизации».

    Ну и возвращаясь к новым физическим принципам оружия, нельзя не вспомнить разработки НИИРП (ныне подразделение концерна ПВО «Алмаз-Антей») и Физико-технического института им. Иоффе. Исследуя воздействие мощного СВЧ-излучения с земли на воздушные объекты (цели), специалисты этих учреждений неожиданно получили локальные плазменные образования, которые получались на пересечении потоков излучения от нескольких источников. При контакте с этими образованиями воздушные цели претерпевали огромные динамические перегрузки и разрушались.

    Согласованная работа источников СВЧ-излучения позволяла быстро менять точку фокусировки, то есть производить перенацеливание с огромной скоростью или сопровождать объекты практически любых аэродинамических характеристик. Опыты показали, что воздействие эффективно даже по боевым блокам МБР. По сути, это уже даже не СВЧ-оружие, а боевые плазмоиды.

    К сожалению, когда в 1993 году коллектив авторов представил проект системы ПВО/ПРО основанной на этих принципах на рассмотрение государства, Борис Ельцин сразу предложил совместную разработку американскому президенту. И хотя сотрудничество по проекту (слава Богу!) не состоялось, возможно, именно это подтолкнуло американцев к созданию на Аляске комплекса HAARP (High freguencu Active Auroral Research Program).

    Проводимые на нём с 1997 года исследования, декларативно носят "сугубо мирный характер". Однако никакой гражданской логики в исследованиях воздействия СВЧ излучения на ионосферу Земли и воздушные объекты, лично я не усматриваю. Остаётся только надеяться на традиционную для американцев провальную историю масштабных проектов.

    Ну а нам следует порадоваться, что к традиционно сильным позициям в области фундаментальных исследований, прибавилась заинтересованность государства в оружии на новых физических принципах. Программы по нему сейчас носят приоритетный характер.



    =====

    Россия, по признанию военных США и НАТО, на сегодняшний день, сильно опережает все остальные армии мира по качеству вооружений.

    Электромагнитное оружие: в чём российская армия опередила конкурентов

    Импульсное электромагнитное оружие, или т.н. «глушилки», является реальным, уже проходящим испытания, типом вооружений российской армии. США и Израиль также проводят успешные разработки в этой области, однако сделали ставку на использование ЭМИ-систем для генерации кинетической энергии боезаряда.

    У нас же пошли по пути прямого поражающего фактора и создали прототипы сразу нескольких боевых комплексов – для сухопутных войск, ВВС и ВМФ. Как утверждают специалисты, работающие над проектом, отработка технологии уже минула стадию полевых испытаний, теперь же идёт работа над ошибками и попытка увеличить мощность, точность и дальность излучения.

    Сегодня наша «Алабуга» , разорвавшись на высоте 200-300 метров, способна отключить всю электронную аппаратуру в радиусе 3,5 км и оставить войсковое подразделение масштаба батальон/полк без средств связи, управления, наведения огня, при этом превратив всю имеющуюся технику противника в груду бесполезного металлолома. Кроме как сдаться и отдать наступающим подразделениям российской армии тяжёлое вооружение в качестве трофеев, вариантов, по сути, не остаётся.

    «Глушилка» электроники

    Преимущества такого «нелетального» поражения очевидны – противнику останется только сдаться, а технику можно получить в качестве трофея. Проблема лишь в эффективных средствах доставки этого заряда – он обладает сравнительно большой массой и ракета должна быть достаточно большой, и, как следствие, весьма уязвимой для поражения средств ПВО/ПРО», – объяснил эксперт.

    Интересны разработки НИИРП (ныне подразделение концерна ПВО «Алмаз-Антей») и Физико-технического института им. Иоффе. Исследуя воздействие мощного СВЧ-излучения с земли на воздушные объекты (цели), специалисты этих учреждений неожиданно получили локальные плазменные образования , которые получались на пересечении потоков излучения от нескольких источников.

    При контакте с этими образованиями воздушные цели претерпевали огромные динамические перегрузки и разрушались. Согласованная работа источников СВЧ-излучения, позволяла быстро менять точку фокусировки, то есть производить перенацеливание с огромной скоростью или сопровождать объекты практически любых аэродинамических характеристик. Опыты показали, что воздействие эффективно даже по боевым блокам МБР. По сути, это уже даже не СВЧ-оружие, а боевые плазмоиды .

    К сожалению, когда в 1993 году коллектив авторов представил проект системы ПВО/ПРО, основанной на этих принципах, на рассмотрение государства, Борис Ельцин сразу предложил совместную разработку американскому президенту. И хотя сотрудничество по проекту не состоялось, возможно, именно это подтолкнуло американцев к созданию на Аляске комплекса HAARP (High freguencu Active Auroral Research Program) – научно-исследовательский проект по изучению ионосферы и полярных сияний. Отметим, что тот мирный проект почему-то имеет финансирование агентства DARPA Пентагона.

    Уже поступает на вооружение российской армии

    Чтобы понять, какое место занимает тема радиоэлектронной борьбы в военно-технической стратегии российского военного ведомства, достаточно посмотреть Госпрограмму вооружений до 2020 года. Из 21 трлн . рублей общего бюджета ГПВ, 3,2 трлн . (около 15%) планируется направить на разработку и производство систем нападения и защиты, использующих источники электромагнитного излучения. Для сравнения, в бюджете Пентагона, по оценке экспертов, эта доля значительно меньше – до 10%.

    Теперь давайте посмотрим на то, что уже сейчас можно «пощупать», т.е. те изделия, которые дошли до серии и поступили на вооружение за последние несколько лет.

    Мобильные комплексы радиоэлектронной борьбы «Красуха-4» подавляют спутники-шпионы, наземные радары и авиационные системы АВАКС, полностью закрывает от радиолокационного обнаружения на 150-300 км, а также может нанести радиолокационное поражение вражеским средствам РЭБ и связи. Работа комплекса основывается на создании мощных помех на основных частотах радаров и прочих радиоизлучающих источников. Предприятие-изготовитель: ОАО «Брянский электромеханический завод» (БЭМЗ).

    Средство радиоэлектронной борьбы морского базирования ТК-25Э обеспечивает эффективную защиту кораблей различного класса. Комплекс предназначен для обеспечения радиоэлектронной защиты объекта от радиоуправляемого оружия воздушного и корабельного базирования, путём создания активных помех. Предусмотрено сопряжение комплекса с различными системами защищаемого объекта, такими как навигационный комплекс, радиолокационная станция, автоматизированная система боевого управления. Аппаратура ТК-25Э обеспечивает создание различных видов помех с шириной спектра от 64 до 2000 МГц, а также импульсных дезинформирующих и имитационных помех с использованием копий сигналов. Комплекс способен одновременно анализировать до 256 целей. Оснащение защищаемого объекта комплексом ТК-25Э в три и более раз снижает вероятность его поражения .

    Многофункциональный комплекс «Ртуть-БМ» разработан и выпускается на предприятиях КРЭТ с 2011 года и является одной из наиболее современных систем РЭБ. Основное назначение станции – защита живой силы и техники от одиночного и залпового огня артиллерийских боеприпасов, оснащённых радиовзрывателями. Предприятие-разработчик: ОАО «Всероссийский «Градиент» (ВНИИ «Градиент»). Аналогичные устройства производит Минское «КБ РАДАР». Отметим, что радиовзрывателями сейчас оснащены до 80% западных снарядов полевой артиллерии, мин и неуправляемых реактивных снарядов и почти все высокоточные боеприпасы, эти достаточно простые средства позволяют защитить от поражения войска в т. ч. непосредственно в зоне контакта с противником.

    Концерн «Созвездие» производит серию малогабаритных (носимых, возимых, автономных) передатчиков помех серии РП-377 . С их помощью можно глушить сигналыGPS , а в автономном варианте, укомплектованном источниками питания, ещё и расставив передатчики на некоторой площади, ограниченной только количеством передатчиков.

    Сейчас готовится экспортный вариант более мощной системы подавления GPS и каналов управления оружием. Она уже является системой объектовой и площадной защиты от высокоточных средств поражения. Построена она по модульному принципу, который позволяет варьировать площади и объекты защиты.

    Из несекретных разработок известны также изделия МНИРТИ – «Снайпер-М», «И-140/64» и «Гигаватт» , выполненные на базе автомобильных прицепов. Они, в частности, используются для отработки средств защиты радиотехнических и цифровых систем военного, специального и гражданского назначения от поражения ЭМИ.

    Ликбез

    Элементная база РЭС весьма чувствительна к энергетическим перегрузкам, и поток электромагнитной энергии достаточно высокой плотности способен выжечь полупроводниковые переходы, полностью или частично нарушив их нормальное функционирование.

    Низкочастотное ЭМО создаёт электромагнитное импульсное излучение на частотах ниже 1 МГц, высокочастотное ЭМО воздействует излучением СВЧ-диапазона – как импульсным, так и непрерывным. Низкочастотное ЭМО воздействует на объект через наводки на проводную инфраструктуру, включая телефонные линии, кабели внешнего питания, подачи и съема информации. Высокочастотное ЭМО напрямую проникает в радиоэлектронную аппаратуру объекта через его антенную систему.

    Помимо воздействия на РЭС противника, высокочастотное ЭМО может также влиять на кожные покровы и внутренние органы человека. При этом в результате их нагрева в организме возможны хромосомные и генетические изменения, активация и дезактивация вирусов, трансформация иммунологических и поведенческих реакций.





    Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта