Главная » Мода » Переработка твёрдых бытовых отходов для выработки тепловой и электрической энергии. Переработка мусора в энергию Энергия из отходов жизнедеятельности

Переработка твёрдых бытовых отходов для выработки тепловой и электрической энергии. Переработка мусора в энергию Энергия из отходов жизнедеятельности

М инистерство образования Республики Беларусь

УО «Белорусский национальный технический университет»

Контрольная работа по дисциплине

ЭНЕРГОСБЕРЕЖЕНИЕ

ТЕМА: « Способы получения энергии из отходов»

Выполнил

Алехно О.Н.

Проверил

Лащук Е.Г.

М инск 2008


Введение…………………………………………………………………………...3

1. Топливное использование твердых бытовых отходов (ТБО)………………4

2. Биогазовая технология переработки отходов животноводства……..……..9

3. Энергетическое использование отходов водоочистки в соединении с ископаемым топливом…………………………………………………………..16

Заключение………………………………………………………………….……19

Список литературы………………………………………………………….......20

ВВЕДЕНИЕ

В последнее время в разных странах активно ведется поиск источников энергии, альтернативных ископаемому топливу. Для Беларуси эта проблема не стоит остро, однако стоит заметить, что и в странах с высокоразвитой энергетикой, имеющих собственные ресурсы, специалисты проводят такие изыскания. Среди эффективных способов получения энергии может стать получение энергии из отходов.

В целом, надо отметить многоаспектность данной проблемы, ведь отходов насчитывается огромное множество и все они различны. Именно поэтому в одной работе нельзя охватить всё. С целью раскрытия темы способов получения энергии из отходов я попытаюсь охватить только некоторые из них:

Во-первых, возможности использования в качестве топлива твёрдых бытовых отходов;

Во-вторых, возможности биогазовой технологии переработки отходов животноводства;

В-третьих, энергетическое использование отходов водоочистки в соединении с ископаемым топливом.


1. Топливное использование твердых бытовых отходов (ТБО).

Одним из эффективных способов получения энергии в будущем может стать использование в качестве топлива твердых бытовых отходов (ТБО). Преимущество бытовых отходов заключается в том, что их не надо искать, не надо добывать, однако в любом случае они должны быть уничтожены – что требует больших денежных средств. Поэтому рациональный подход здесь позволяет не только получить дешевую энергию, но и избежать лишних затрат.

Целенаправленное промышленное использование твердых бытовых отходов как топлива началось со строительством первого «мусоросжигательного заведения» близ Лондона в 1870 году. Однако активное применение ТБО как энергетического сырья началось только в середине 1970‑х годов в связи с углублением энергетического кризиса. Было подсчитано, что при сжигании одной тонны отходов можно получить 1300‑1700 кВт/ч тепловой энергии или 300‑550 кВт/ч электроэнергии.

Именно в этот период началось строительство крупных мусоросжигательных заводов в Мадриде, Берлине, Лондоне, а также в странах с относительно малой площадью и высокой плотностью населения. К 1992 году в мире действовало около 400 заводов, на которых применялось сжигание ТБО с производством пара и выработкой электроэнергии. К 1996 году их количество достигло 2400.

В нашей стране термическая переработка ТБО началась с 1972 года, когда в восьми городах СССР было установлено 10 мусоросжигательных заводов первого поколения. Эти заводы были практически без газоочистки и почти не использовали вырабатываемое тепло. В настоящее время они морально устарели и не отвечают современным требованиям по экологическим показателям. В связи с этим большая часть этих заводов закрыта, а остальные подлежат реконструкции.

В Москве было построено три таких предприятия. Мусоросжигательный завод № 2 (МСЗ-2) был построен в 1974 году для сжигания несортированных твердых бытовых отходов в объеме 73 тыс. тонн в год. Он имел две технологические линии, включающие в себя котлы французской фирмы «КНИМ» и электрофильтры.

Решением правительства Москвы о реконструкции МСЗ-2 предписывалось увеличение мощности завода до 130 тыс. тонн отходов в год с одновременным уменьшением количества вредных выбросов в окружающую среду и, тем самым, улучшением экологической обстановки в районе предприятия. Для выполнения указанной задачи была опять привлечена французская фирма «КНИМ», которая должна была разработать и поставить три модернизированные технологические линии производительностью по сжигаемым ТБО в 8,33 т/ч каждая.

Кроме того, предусматривалось использование тепла, получаемого при сжигании твердых бытовых отходов, для выработки электроэнергии .

По результатам эксплуатации реконструированной первой очереди завода, состоящей из двух технологических линий, можно констатировать, что все указанные выше требования выполнены, а именно:

1. Производительность МСЗ увеличена до 80 тыс. тонн ТБО в год, а с пуском в эксплуатацию третьей технологической линии – до 130 тыс. тонн в год.

2. Снижены до европейских нормативов (0,1 нг/нм3) выбросы диоксинов и фуранов: во‑первых, за счет оптимизации горения отходов на колосниковой решетке «Мартин»; во‑вторых, за счет увеличения высоты топки котла, что обеспечивает необходимое двухсекундное пребывание дымовых газов при температуре выше 850°C для разложения диоксинов на фураны, образующиеся при горении; и в‑третьих, за счет ввода в дымовые газы активированного угля, абсорбирующего вторично образованные диоксины.

3. Обеспечены европейские нормативы по очистке дымовых газов от S02, НСl, НF благодаря установке в технологической схеме сжигания ТБО «полусухого» реактора и ввода в него через распылительную турбину известкового молока, приготовленного из пушонки высокого качества.

4. Достигнута за счет установки рукавного фильтра высокая степень очистки дымовых газов от летучей золы и продуктов газоочистки: концентрация пыли составляет менее 10 мг/нм3.

5. Благодаря применению технологии по подавлению оксидов азота (NOx), разработанной Государственной академией нефти и газа им. И. М. Губкина, полученные показатели по их выбросам находятся на уровне лучших зарубежных образцов (менее 80 мг/нм3).

6. При выполнении реконструкции завода произведена установка трех турбогенераторов мощностью по 1,2 МВт каждый, что обеспечило его функционирование без внешнего электроснабжения, с передачей излишков энергии в городскую сеть.

7. Управление технологическим процессом мусоросжигания осуществляется оператором с автоматизированного рабочего места. АСУ ТП представляет собой единую систему контроля и управления как основным, так и вспомогательным оборудованием завода.

Принципиально новый для России мусоросжигательный завод производительностью 300 тыс. тонн ТБО в год был построен в Москве в начале 2000‑х. Завод состоит из отделений подготовки и сортировки отходов, сжигания неутилизируемой части ТБО, очистки дымовых газов от вредных примесей, переработки золы и шлака, энергоблока и других вспомогательных отделений. Технологическая схема завода по переработке неутилизируемой части отходов включает в себя три технологические линии с печами кипящего слоя, котлами производительностью 22‑25 т/ч, газоочистным оборудованием и двумя турбинами по 6 МВт каждая.

На заводе внедрены ручная и механическая сортировка ТБО и их дробление. Технология позволяет, во‑первых, отобрать ценное сырье для его вторичной переработки, во‑вторых, отобрать пищевую фракцию отходов для последующего компостирования; в‑третьих, отобрать сырье, представляющее экологическую опасность при сжигании; и наконец, повысить теплотехнические и экологические показатели сырья, предназначенного для сжигания. Благодаря такой подготовке низшая теплота сгорания ТБО достигает 9 МДж/кг, а по содержанию золы, влаги, серы и азота характеристики практически соответствуют характеристикам подмосковных бурых углей.

Однако следует отметить, что низкие параметры пара, применяемые на отечественных мусоросжигательных заводах, существенно снижают удельные показатели по выработке электроэнергии по сравнению с паросиловыми электростанциями. Применение аналогичных мощностей и параметров пара на мусоросжигательных заводах ограничено свойствами сырья: кусковым топливом, низкой температурой плавления золы и коррозионными свойствами дымовых газов, получаемых при сжигании.

Существенного повышения эффективности применения ТБО как топлива для выработки электроэнергии и достижения удельных показателей, близких к серийно применяемым ТЭС, по всей видимости, можно достигнуть за счет частичного замещения энергетического топлива бытовыми отходами.

В этом случае при сжигании на ТЭС бурого угля целесообразно использование предтопок для сжигания твердых бытовых отходов с направлением дымовых газов, получаемых в предтопке, в топочное пространство существующего котельного агрегата. При сжигании на ТЭС природного газа целесообразно использовать установку для газификации ТБО с последующей очисткой полученного продукта – газа и сжиганием его в топках котлов, работающих на природном газе. Годами отработанная паросиловая установка, применяемая на ТЭС, сохраняется при этом в первозданном виде.

То есть предлагается разработка совмещенной (интегральной) компоновки ТЭС для сжигания природного топлива и твердых бытовых отходов. Доля ТБО по количеству тепла может составлять примерно 10% от тепловой мощности котла. В этом случае только за счет повышенных параметров пара и увеличенной мощности котлов и турбин эффективность использования бытовых отходов повысится в 2‑3 раза.

Существенный экономический эффект может быть получен за счет снижения капитальных вложений благодаря использованию существующей на ТЭС инфраструктуры и сокращению расходов на газоочистное оборудование .

Немаловажным экономическим фактором является и то, что энергетическое топливо, в том числе и бурый уголь, имеющий практически равноценные энергетические показатели с твердыми бытовыми отходами, надо покупать, а ТБО, напротив, принимается с денежной доплатой.

Каждый из нас ежедневно сталкивается с банальной ситуацией, — выносом (вывозом) мусора из квартиры или дома. Выбросив сверток в мусорный бак, мы не утруждаем себя более заботами о дальнейшем пути его следования, хотя видим, как специальная мусоросборочная машина забирает мусор из баков и вывозит его на свалку. Мы не задумываемся, что же происходит дальше, и уж тем более не ставим вопрос: «Можно ли мусор утилизировать, перерабатывать и при этом получать энергию?

Утилизация твердых бытовых отходов (ТБО) в нашей стране из острого вопроса превратилась в национальную проблему. Методы утилизации, которые используются в настоящее время, имеют существенные недостатки: перегрузка полигонов, которая не соответствуют требованиям зкологической безопасности; протесты населения на землеотвод под полигоны для захоронения мусора; появление вокруг мусоросжигающих заводов отравленных зон, размер которых постоянно увеличиваются.

Одна из действующих технологий по переработки ТБО, это мусоросжигающие заводы. По данным экологов, современный мусоросжигающий завод в Германии при стоимости 220 млн.€ из перерабатываемых 226 тысяч тонн мусора в год производит 20 тысяч тонн ядовитых продуктов сгорания и 60 тысяч тонн шлака, которые требуют захоронения или дополнительной переработки.

Отмечу важную деталь, — с 2020 года вступает в силу запрет захоронения мусора на полигонах Украины.

Просматривая базу данных украинских патентов на изобретения по переработке ТБО и консультируясь со специалистами данных технологий, узнаю, что существует множество технических решений по их утилизации, переработке и получению ценных отходов с попутным образованием энергии в виде синтез-газа или жидкого топлива.

Из обилия технических решений, я остановился на одном из них, как мне кажется, отвечающим современным требованиям по экологии и с достаточным количеством получения объема альтернативной энергии и хочу более подробно с ним ознакомить.

Специалисты из Швейцарии предлагают уникальную технологию переработки мусора, которая имеет преимущества по сравнению с другими известными технологиями.

безотходное производство не требует полигонов для захоронения отходов;
— практическое отсутствие выбросов в окружающую среду вредных веществ;
— возможность одновременной переработки любых видов отходов (бытовых, промышленных, ядовитых) без предварительной обработки и сортировки;
— возможность переработки как твердых, так и жидких отходов;
— нет ограничений ни по форме, ни по материалам (фрагменты до 700мм);
— возможность вторичного использования продуктов переработки отходов (минеральный стеклогранулят, железо-медный сплав, сера, цинковый концентрат);
— получение в результате переработки отходов синтез-газа (1000м3 из одной тонны мусора), который может быть использован не только как энергоноситель, но и, при более глубокой переработке, как сырье для производства пропана, бутана, бензина (120 литров Евро-4/Евро-5 из одной тонны мусора), азотосодержащих удобрений, метанола.

Технология «Термоселект»

В основе технологии лежит пиролиз с последующей газификацией при высокой температуре, позволяющей без загрязнения окружающей среды превращать отходы в сырье, которой можно использовать в промышленности.

Мусор предварительно сжимается и уплотняется в прессе, затем подвергается сушке и стабилизации по форме, а затем превращается в синтез-газ.

Путем газификации органической составляющей мусора с использованием кислорода в высокотемпературном реакторе достигается температура до 2000 град.С, при котором все неорганические составляющие мусора (стекло, керамика, металл) расплавляются и термически обрабатываются в гомогенизаторе.

Результатом этого процесса является смешанный гранулянт, минеральная часть которого может быть использована как добавка к бетону в строительной индустрии в пескоструйной очистке или как сырье для производства цемента. Металлический гранулянт может найти применение в металлургии, поскольку состоит из чистого железа.

Путем дегазации с применением чистого кислорода и при достаточно длительном нахождении газа в высокотемпературном реакторе (свыше 1200 град.С) получается синтез-газ, который состоит примерно на треть из Н2, СО и СО2. Количество и точное соотношение компонентов синтез-газа зависят от калорийности и компонентов использования мусора.

В дальнейшем синтез-газ резкому (шоковому) охлаждению до температуры 70 град.С. и многоступенчатому процессу очистки. Полученный в результате очистки синте-газ можно использовать в качестве топлива для производства тепловой или электрической энергии, а так же в качестве промышленного сырья.

Данная технология впервые была использована в 1990 г в г. Чиба (Япония), причем, в начале, смонтированное оборудование работало на переработке бытового мусора, а начиная с 2000 г и на промышленных отходах.

Сравнение традиционного мусоросжигания с технологией Термоселект

Исходные данные

Вид отходов – бытовой мусор
Теплотворная способность – 10 МДж/кг
Производительность в час – 13,3 т
Время работы – 7500 ч в год (85%)
Общая производительность – 100 000 т
Термическая мощность – 37 МВт

При сжигании мусора (обжиговая печь и котел-утилизатор) производится 29,6 МВт пара, при этом вырабатывается электроэнергии – 7,7 МВт. КПД установки до 30%. Из всего объема полученной электроэнергии почти половину – 3,3 МВт идет на собственные нужды мусоросжигающей установки. В ходе сжигания мусора с указанной производительностью выбрасывается в атмосферу 1,9 т пыли в год.

При тех же равных условиях технология Термоселект предусматривает производство синтез-газа – 13300 нм.куб/ч
Теплотворная способность синтез-газа – 2,5 кВт. ч/нм. куб
Производство пара – 30,6 МВт
Выработка электроэнергии – 8 МВт
КПД установки до 50%
Концентрация пыли на выходе составляет – 203 кг в год.

Явным преимуществом последней технологии является чистота и однородность полученного синтез-газа с высокой калорийностью, который можно сжигать не только в котлах с производством пара и высоким кпд, но и сжигание его в газовых двигателях, при этом объем производства электрической энергии может составить до 12 МВт в час.

Действительно, переработка мусора в энергию при определенном вложении инвестиций можно организовать экологически чистый, прибыльный бизнес.

Получение электроэнергии из отходов является одним из путей охраны окружающей среды.

Далее мы ознакомимся с разными способами получения энергии из отходов. Как уже отмечалось, переработка отходов является одним из способов охраны окружающей среды. При осуществлении процесса переработки не только можно сэкономит в потреблении многих природных ресурсов, но и снизить уровень загрязнения воды, воздуха и почвы. На сегодня в программу стран по охране окружающей среды включены вопросы выработки топлива из мусора. Сегодня мы хотим рассмотреть этот вопрос.

Как было сказано, "дорога цивилизации вымощена горами мусора" . Если отходы будут переработаны, можно будет перейти на вторичное использование, а если останутся нетронутыми и захороненными, то останутся загрязнителями окружающей среды. По итогам исследований Всемирной организации здравоохранения (ВОЗ), игнорирование сбора и утилизации отходов может вызвать как минимум 32 экологические проблемы. Вот почему сегодня переработка воспринимается всерьез многими странами. Одним из новейших способов снижения негативного влияния, которое оказывает полигон отходов (ТБО) на окружающую среду, является переработка мусора в топливо. Переработка мусора в топливо - это процесс, в ходе которого бесполезные отходы превращаются в практически бесплатную тепловую энергию, которую можно использовать в виде электричества или тепла. Такая практика из давних времен проводилась традиционным образом во многих странах мира. Например, 400 лет назад в Иране иранский ученый шейх Бахаи создал баню, энергоснабжение которой обеспечивалось за счет газа, испускаемого из сточных вод. В Индии также некоторые люди, собирая отходы животноводства в закрытых контейнерах, сжигали их в течение 9 месяцев. Этот процесс используется в современной технологии в разных городах мира. В особенности уделяется внимание использованию газа, получаемого от центров захоронения мусора в некоторых городах мира.

Метан, составляющий около 55% всего газа, испускаемого на свалках, является одним из парниковых газов, который с точки зрения потенциала создания парникового феномена является равноценным углекислому газу и даже выше, так что концентрация метана в атмосфере увеличится на 0,6 процента в год. Концентрация других парниковых газов в атмосфере, в том числе углекислого, увеличивается лишь на 0,4%. Метан в случае, если не будет контролирован правильно, может привести к загрязнению грунтовых вод. Таким образом, восстановление и правильное использование метана может играть значительную роль в защите окружающей среды.

Из каждой тонны сырых твердых отходов можно получить от 5 до 20 кубометров газа в год, и увеличение этого количества возможно с помощью правильной разработки и управления ресурсов. Некоторые рядовые люди полагают, поскольку этот газ получается из отходов, то является опасным и загрязняющим, и его сжигание является ненадежным. Однако ученые считают, что это как раз наоборот, а газ, полученный от свалки отходов, является менее загрязняющим, и поскольку температура пламени низка, количество загрязнений будет составлять на 60% меньше, чем при сжигании природного газа. Поэтому, по мнению экологов, обуздание газа, получаемого от мусора, является обязательным. В последние годы, когда цены на энергоносители повысились, этому виду топлива уделили большее внимание. По данным статистики, сейчас в мире существуют сотни полигонов, на которых испускаемый газ используется для производства электроэнергии и даже продажи другим покупателям.

Сбор этого вида газа в центре полигона является довольно нетрудным. Для этого нужно вырыть вертикальные скважины вокруг полигона. Эти скважины соединяются через сеть труб, предназначенных для сбора газа. Конечно, для того, чтобы увеличить производительность системы, можно поместить на их пути слои дробленного камня, бетона и песка. Кроме того, все эти скважины соединены с центральным коллектором. Коллектор можно соединить с компрессором или воздуходувкой. Примерно для каждого 0,4 гектара площади полигона захоронения требуется скважина для сбора газа. В конце концов, можно ввести газ в факел или выделить его на любое другое потребление или даже очистить его и повысить его качество. Таким образом, при совместном производстве тепловой и электрической энергии можно наблюдать резкое снижение выбросов углекислого газа и повышение эффективности использования топлива. Высокая общая эффективность этой технологии по сравнению с производством электрической и тепловой энергии традиционными методами способствовала тому, что этот тип технологии высоко ценится в последние годы в Европе. Крупнейшая в Европе биогазовая установка находится в столице Австрии Вене, в ней газ, добываемый из свалки, используется для производства 8 мВт электроэнергии. Запуск конгенерационных установок молниеносно распространяется на страны Европейского союза, поскольку частные и государственные сектора оценили конгенерационную технологию как экономически эффективный источник энергии с различными способностями.

Один из успешных проектов, проводимых в этой области, осуществляется в канадском городе Эдмонтон. Электроэнергетическое предприятие Эдмонтона сумело, используя метан, добиваемый из свалки Clover Bar, запустить большую электростанцию. Запуск этого проекта в 1992 г. способствовал тому, что атмосферный выброс углекислого газа сократился на около 662 тысяч тонн. Лишь в 1996 г. этот проект способствовал сокращению выброса парниковых газов на 182 тысяч тонн, а в период с 1992 г. по 1996 г. было получено около 208 гигаватт-часов электроэнергии. Даже газ, полученный этим методом, продавался по более низкой цене, чем природный газ, так оказался более экономичным. В Азии столица Южной Кореи, Сеул, является одним из городов, которые частично обеспечивает тепловую энергию от сжигания отходов. В этом городе выбрасывается много отходов. На основе опубликованных докладов, в последние годы в Сеуле 730 тысяч тонн из 1,1 млн. тонн воспламеняющихся бытовых отходов использовалась как топливо для производства энергии. Говорится, что это эквивалентно годовой потребности в отоплении 190 тысяч городских домохозяйств. Южная Корея планирует, удовлетворяя более 10% своих энергетических потребностей за счет возобновляемых источников, к 2030 году войти в первую "пятерку" стран мира с "зеленой экономикой" .

В дополнение к производству энергии из отходов, еще одним из способов утилизации отходов является их переработка в компостные удобрения. Компостирование - это способ обезвреживания бытовых, сельскохозяйственных и некоторых промышленных твердых отбросов, основанный на разложении органических веществ аэробными микроорганизмами. Получающийся в результате этого процесса компост подобен гумусу и используется в качестве удобрения. Это, пожалуй, самый старый метод утилизации. Процесс компостирования очень прост, делается опытными специалистами либо в собственных домах фермеров или на их землях, либо промышленным образом. Эти удобрения считаются одним из наилучших удобрений для сельскохозяйственных целей, могут быть полезными и для выращивания цветов. Результатом наличия в удобрениях магния и фосфата будет образование аллювия и быстрое всасывание питательных веществ в почве. Компост считается также естественным пестицидом для почвы. Используя компост можно на 70% сэкономить в потреблении химических удобрений. Каждый живущий в городе человек отбрасывает более полкилограмма мусора в день, одна треть которого является конвертируемым в компост. Если предположим, население города насчитывает 30 млн. человек, то город ежедневно производится 15 млн. кг отходов, 5 млн. из которых можно конвертировать в компост.

Таким образом, современный человек после горького опыта прошлого столетия решил, что должен оценить по должности Божье блага и заняться охраной окружающей среды, так как существование будущего человеческого поколения и мира зависит именно от его сегодняшних усилий.

ГК «ЭКОНАЦПРОЕКТ» является официальным представителем крупного немецкого промышленного производителя оборудования в области генерации энергии и технологии электростанций — Oschatz. Одним из направлений нашей работы является продвижение экологически чистых технологий по генерации тепловой и электрической энергии из отходов производства и потребления, для дополнительной информации предлагаем Вам ознакомиться с нашей брошюрой «Генерация энергии из отходов» .

Из различных методов переработки твердых бытовых отходов наиболее отработанным и часто используемым является термическая переработка. Возможность использования этого метода основана на морфологическом составе отходов, которые содержат до 70% горючих компонентов.

Главными преимуществами термической переработки являются:


ТЭЦ на топливе из отходов, г. Хагенов (Германия) введена в эксплуатацию в 2009 г.

Смешанные коммунальные отходы содержат значительное количество влаги и нежелательных компонентов, таких как металлы, хлорсодержащие пластики и т.д. Для безопасной термической переработки таких отходов и повышения их теплотехнических характеристик предусматривается подготовка отходов в альтернативное RDF - топливо.

Альтернативное топливо - RDF.

RDF (от англ.RefuseDerivedFuel) - это обезвоженная и измельченная, смесь теплотворных фракций отходов, с теплотворной способностью до 18000 Кдж/кг, новый альтернативный источник энергии. Широко применяется в качестве топлива в цементной и энергетической промышленности в развитых странах.

Сегодня для термической переработки отходов используются разные технологии. Однако, наибольшее распространение в Европе получила технология сжигания на колосниковой решетке. Данная технология зарекомендовала себя как наилучшая для сжигания остатков после сортировки отходов, универсальна и наименее требовательна к качеству топлива. Технология детально описана в документе BAT «Интеграция предотвращения и уменьшения загрязнения окружающей среды - памятка по наилучшим из доступных технологий сжигания отходов» Европейского союза.

Описание технологии

Принципиальная схема технологии термической переработки отходов в печи с колосниковой решеткой:

Смешанные отходы или RDF поступает в приемное отделение, где проходит первичный контроль, затем поступает в бункер-накопитель. Из бункера топливо(отходы) дозированно подается в печь слоевого сжигания с колосниковой решеткой, где сгорает при температуре 850 - 1000°С (в зависимости от свойств отходов). Сгоревшие остатки в виде золы и шлака удаляются для дальнейшей утилизации. Образовавшиеся горячие газы нагревают стенки котла-утилизатора и системы пароперегревателей, которые переводят тепло в водяной пар, далее энергия водяного пара преобразуется в электрическую энергию или используется в виде тепла. Отработанные газы охлаждаются и реагирую с известковым молоком, карбамидом и активированным углем, при этом в газовом потоке обезвреживаются оксиды азота и серы, а также диоксины и тяжелые металлы. Далее частицы золы и реагентов улавливаются системой рукавных фильтров и удаляются для утилизации. Таким образом, газы на выходе содержат вредные примеси в пределах экологических и санитарных нормативов, примером тому заводы термической утилизации расположенные в густонаселенных городах Европы.

Колосниковая решетка для слоевого сжигания

Фирменная колосниковая решетка Oschatz является продуктом дальнейшего развития технологии горизонтальной решетки DanishEnergySystems, которая функционирует на протяжении нескольких десятилетий. Решетка Oshatz предусматривает такие особенности топлива из отходов, как: низшая теплота сгорания (НТС), высокая зольность и содержание влаги.

Схема устройства печи слоевого сжигания Oschatz .

Конфигурация и функциональность решетки. Для контроля процесса горения решетка разделена на несколько секций. Скорость и длина хода колосников может быть отрегулирована индивидуально. Аналогичным образом решетка разделена на несколько воздушных зон, чтобы адаптировать первичный воздух к характеристикам сгорания топлива. Топливо подается на решетку непрерывно с помощью индивидуально разработанного устройства подачи. Колосники, закрепленные последовательно на решетке изготовлены из специальной тепло- и износостойкой легированной стали с высоким содержанием хрома, кремния и никеля. Первичный воздух подается на решетку снизу вместе с рециркуляцией дымовых газов. Вторичный воздух подается в пространство над решеткой печи и обеспечивает необходимый кислород для оптимального дожигания топлива.

При слоевом сжигании, отходов, RDF или биомассы за печью располагается котел-утилизатор с системой пароперегревателей, за ним следует система нейтрализации вредных примесей, системы пыле- и газоочистки, а также блок генератора тепловой и электрической энергии. ЭКОНАЦПРОЕКТ поставляет концептуальные, разработанные Oschatz с использованием новейших современных достижений водотрубные котлы вертикального, горизонтального или комбинированного расположения.

Мы осуществляем поставку, как отдельных агрегатов, так и разработку и строительство целых заводов «под ключ».

Для получения каталога продукции и дополнительной информации обращайтесь по телефону:

Алексей Степанов, Руководитель компании «Свеза Новатор», поселок Новатор (Великоустюгский район, Вологодская область)

  • Как предприятию самому вырабатывать 70% электроэнергии из отходов

Сегодня выгоднее вырабатывать электроэнергию из отходов. На кубометр готовой фанеры приходится кубометр отходов. В советское время отходы можно было захоронить. Из-за ужесточения природоохранного законодательства утилизация сегодня стоит дорого.

Компании собирают обширный массив данных о клиентах, который в итоге оказывается бесполезным. Сведения разрозненные, часто устаревшие или искаженные - на такой основе невозможно сделать покупателю уникальное торговое предложение и спрогнозировать продажи. В нашей статье описаны инструменты сбора и анализа информации, использование которых:

  • оптимизирует расходы компании на маркетинг;
  • поможет выстроить стратегию продаж;
  • снизит отток покупателей благодаря повышению качества обслуживания.

В течение многих лет наш комбинат вырабатывает из отходов электроэнергию, которую использует в производстве. Комбинат работает круглые сутки и образует 500 кубометров отходов (кора, щепа, карандаш и шлифовальная пыль). Вот что мы делаем с отходами.

1. Сжигаем кору и щепу. При сжигании отходов образуется тепловая энергия. Ее используем для сушки шпона и склеивания фанеры. Задействуем термомасляные и энергетические установки. Первые нагревают теплоноситель, вторые – воду, получая пар. На сушку шпона идет 21% отходов, на склейку фанеры – 7%. Отходы используем и для генерации электроэнергии на собственной теплоэлектростанции. Топливо подается в котельную, вырабатывающую пар. Пар по трубам поступает в зал, где стоят две турбины калужского завода по 1,5 МВт выработки каждая. Турбины раскручиваются паром. К каждой из них подключен генератор, вырабатывающий электричество. На процесс идет четверть коры и щепы.

2. Продаем карандаш. Карандаш – это остаток чурки (на профессиональном языке называется чурак). При лущении чурак вращается вокруг своей оси. Перпендикулярно к оси вращения чурака перемещается лущильный нож, равномерно снимающий ленту древесины толщиной 1,6 мм. Чурак «разматывается» до цилиндра толщиной 50 мм – получается карандаш, на который приходится 13% отходов. Мы продаем его в розницу работникам комбината и местным жителям: из карандаша получаются дрова. Местные бизнесмены используют карандаш в производстве угля. Кубометр карандаша стоит 200 руб.

3. Делаем новый продукт из шлифовальной пыли (доля отходов – 3%). Раньше мы сжигали пыль, но затем нашли выгодный вариант переработки. Вместе с партнером делаем из пыли топливные брикеты. В одном брикете – 3 кг дров. Когда их сжигают, зола почти не образуется (процент образования золы из пыли низкий, так как пыль получается при шлифовании лицевой стороны фанеры, где нет частиц коры).

  • Отходы промышленного производства: 9 идей, как на них заработать

Организация сбора, хранения и перераспределения отходов

Отходы доставляем на склад с помощью транспортеров. Ручного труда нет: процесс регулируют операторы за панелью управления, работают тракторы-погрузчики. По дороге отходы отгружаются в печи участков сушки и склеивания. Загрузочное устройство печей открыто до тех пор, пока емкость не наполнится, затем оператор нажатием кнопки закрывает задвижку. Если задвижка закрыта, отходы едут дальше по транспортеру на склад. На складе отходы ссыпают с ленты, часть из них фронтальные погрузчики распределяют на кучи, а часть – разравнивают. Вокруг и среди куч с отходами идет дорога, она нужна для проезда и противопожарных целей.

Со склада на электростанцию отходы доставляют транспортеры. Фронтальный погрузчик загребает ковшом 10 кубов, подвозит к нужной ленте (подвижному полу, который доставляет отходы в скребковый транспортер) и высыпает. По транспортеру отходы едут в печь электростанции.

В итоге

Мы вырабатываем 70–80% электроэнергии из отходов производства. В дни ремонта, когда станки (60% парка) отдыхают, обходимся собственными ресурсами. Лишь однажды в сильные морозы нам не хватило отходов для выработки электричества, тогда мы бесплатно взяли щепу на соседней лесопилке. В планах – увеличить число турбин, чтобы полностью отказаться от покупной энергии.

  • Как создать безотходное производство, чтобы сделать прибыль максимальной




Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта