Главная » Красота » Что больше масса протона или электрона. Структура атома: что такое нейтрон

Что больше масса протона или электрона. Структура атома: что такое нейтрон

  • Перевод

В центре каждого атома находится ядро, крохотный набор частиц под названием протоны и нейтроны. В этой статье мы изучим природу протонов и нейтронов, состоящих из частиц ещё мельче размером – кварков, глюонов и антикварков. (Глюоны, как и фотоны, являются античастицами сами себе). Кварки и глюоны, насколько нам известно, могут быть по-настоящему элементарными (неделимыми и не состоящими из чего-то мельче размером). Но к ним позже.

Как ни удивительно, у протонов и нейтронов масса почти одинаковая – с точностью до процента:

  • 0,93827 ГэВ/с 2 у протона,
  • 0,93957 ГэВ/с 2 у нейтрона.
Это ключ к их природе – они на самом деле очень похожи. Да, между ними существует одно очевидное различие: у протона положительный электрический заряд, а у нейтрона заряда нет (он нейтральный, отсюда и его название). Соответственно, электрические силы действуют на первый, но не на второй. На первый взгляд это различие кажется очень важным! Но на самом деле это не так. Во всех остальных смыслах протон с нейтроном почти близнецы. У них идентичны не только массы, но и внутреннее строение.

Поскольку они так похожи, и поскольку из этих частиц состоят ядра, протоны и нейтроны часто называют нуклонами.

Протоны идентифицировали и описали примерно в 1920 году (хотя открыты они были раньше; ядро атома водорода – это просто отдельный протон), а нейтроны нашли где-то в 1933-м. То, что протоны и нейтроны так похожи друг на друга, поняли почти сразу. Но то, что у них есть измеримый размер, сравнимый с размером ядра (примерно в 100 000 раз меньше атома по радиусу), не знали до 1954-го. То, что они состоит из кварков, антикварков и глюонов, постепенно понимали с середины 1960-х до середины 1970-х. К концу 70-х и началу 80-х наше понимание протонов, нейтронов, и того, из чего они состоят, по большей части устаканилось, и с тех пор остаётся неизменным.

Нуклоны описать гораздо труднее, чем атомы или ядра. Не сказать, что , но по крайней мере, можно сказать, не раздумывая, что атом гелия состоит из двух электронов, находящихся на орбите вокруг крохотного ядра гелия; а ядро гелия – достаточно простая группа из двух нейтронов и двух протонов. А вот с нуклонами всё уже не так просто. Я уже писал в статье " ", что атом похож на элегантный менуэт, а нуклон – на дикую вечеринку.

Сложность протона и нейтрона, судя по всему, всамделишные, и не проистекают из неполных физических знаний. У нас есть уравнения, используемые для описания кварков, антикварков и глюонов, а также сильных ядерных взаимодействий, происходящих между ними. Эти уравнения называются КХД, от "квантовая хромодинамика ". Точность уравнений можно проверять различными способами, включая измерение количества появляющихся на Большом адронном коллайдере частиц. Подставляя уравнения КХД в компьютер и запуская вычисления свойств протонов и нейтронов, и других сходных частиц (с общим названием «адроны»), мы получаем предсказания свойств этих частиц, хорошо приближающиеся к наблюдениям, сделанным в реальном мире. Поэтому у нас есть основания полагать, что уравнения КХД не врут, и что наше знание протона и нейтрона основано на верных уравнениях. Но просто иметь правильные уравнения недостаточно, ибо:

  • У простых уравнений могут оказаться очень сложные решения,
  • Иногда невозможно описать сложные решения простым способом.
Насколько мы можем судить, именно так дело обстоит с нуклонами: это сложные решения относительно простых уравнений КХД, и описать их парой слов или картинок не представляется возможным.

Из-за внутренней сложности нуклонов вам, читатель, придётся сделать выбор: как много вы хотите узнать по поводу описанной сложности? Неважно, как далеко вы зайдёте, удовлетворения это вам, скорее всего, не принесёт: чем больше вы будете узнавать, тем понятнее вам будет становиться тема, но итоговый ответ останется тем же – протон и нейтрон очень сложны. Я могу предложить вам три уровня понимания, с увеличением детализации; вы же можете остановиться после любого уровня и перейти на другие темы, или можете погружаться до последнего. По поводу каждого уровня возникают вопросы, ответы на которые я могу частично дать в следующем, но новые ответы вызывают новые вопросы. В итоге – как я делаю в профессиональных обсуждениях с коллегами и продвинутыми студентами – я могу лишь отослать вас к данным полученным в реальных экспериментах, к различным влиятельным теоретическим аргументам, и компьютерным симуляциям.

Первый уровень понимания

Из чего состоят протоны и нейтроны?

Рис. 1: чрезмерно упрощённая версия протонов, состоящих только из двух верхних кварков и одного нижнего, и нейтронов, состоящих только из двух нижних кварков и одного верхнего

Чтобы упростить дело, во многих книгах, статьях и на сайтах указано, что протоны состоят из трёх кварков (двух верхних и одно нижнего) и рисуют нечто вроде рис. 1. Нейтрон такой же, только состоящий из одного верхнего и двух нижних кварков. Это простое изображение иллюстрирует то, во что верили некоторые учёные, в основном в 1960-х. Но вскоре стало понятно, что эта точка зрения чрезмерно упрощена до такой степени, что уже не является корректной.

Из более искушённых источников информации вы узнаете, что протоны состоит из трёх кварков (двух верхних и одного нижнего), удерживаемых вместе глюонами – и там может появиться картинка, похожая на рис. 2, где глюоны нарисованы в виде пружинок или ниток, удерживающих кварки. Нейтроны такие же, только с одним верхним кварком и двумя нижними.


Рис. 2: улучшение рис. 1 за счёт акцента на важной роли сильного ядерного взаимодействия, удерживающего кварки в протоне

Не такой уж плохой способ описания нуклонов, поскольку он делает акцент на важной роли сильного ядерного взаимодействия, удерживающего кварки в протоне за счёт глюонов (точно так же, как с электромагнитным взаимодействием связан фотон, частица, из которых состоит свет). Но это тоже сбивает с толку, поскольку на самом деле не объясняет, что такое глюоны и что они делают.

Есть причины двигаться дальше и описывать вещи так, как я делал в : протон состоит из трёх кварков (двух верхних и одного нижнего), кучи глюонов и горы пар кварк-антикварк (в основном это верхние и нижние кварки, но есть и несколько странных). Все они летают туда и сюда с очень большой скоростью (приближаясь к скорости света); весь этот набор удерживается при помощи сильного ядерного взаимодействия. Я продемонстрировал это на рис. 3. Нейтроны опять такие же, но с одним верхним и двумя нижними кварками; изменивший принадлежность кварк указан стрелкой.


Рис. 3: более реалистичное, хотя всё равно неидеальное изображение протонов и нейтронов

Эти кварки, антикварки и глюоны не только бешено носятся туда-сюда, но и сталкиваются друг с другом, и превращаются друг в друга через такие процессы, как аннигиляция частиц (в которой кварк и антикварк одного типа превращаются в два глюона, или наоборот) или поглощение и испускание глюона (в котором могут столкнуться кварк и глюон и породить кварк и два глюона, или наоборот).

Что у этих трёх описаний общего:

  • Два верхних кварка и нижний кварк (плюс что-то ещё) у протона.
  • Один верхний кварк и два нижних кварка (плюс ещё что-то) у нейтрона.
  • «Ещё что-то» у нейтронов совпадает с «ещё чем-то» у протонов. То есть, у нуклонов «ещё что-то» одинаковое.
  • Небольшая разница в массе у протона и нейтрона появляется из-за разницы масс нижнего кварка и верхнего кварка.
И, поскольку:
  • у верхних кварков электрический заряд равен 2/3 e (где e – заряд протона, -e – заряд электрона),
  • у нижних кварков заряд равен -1/3e,
  • у глюонов заряд 0,
  • у любого кварка и соответствующего ему антикварка общий заряд равен 0 (к примеру, у антинижнего кварка заряд +1/3e, так что у нижнего кварка и нижнего антикварка заряд будет –1/3 e +1/3 e = 0),
Каждый рисунок относит электрический заряд протона на счёт двух верхних и одного нижнего кварка, а «ещё что-то» добавляет к заряду 0. Точно так же у нейтрона заряд нулевой благодаря одному верхнему и двум нижним кваркам:
  • общий электрический заряд протона 2/3 e + 2/3 e – 1/3 e = e,
  • общий электрический заряд нейтрона 2/3 e – 1/3 e – 1/3 e = 0.
Различаются эти описания в следующем:
  • сколько «ещё чего-то» внутри нуклона,
  • что оно там делает,
  • откуда берутся масса и энергия массы (E = mc 2 , энергия, присутствующая там, даже когда частица покоится) нуклона.
Поскольку большая часть массы атома, и, следовательно, всей обычной материи, содержится в протонах и нейтронах, последний пункт крайне важен для правильного понимания нашей природы.

Рис. 1 говорит о том, что кварки, по сути, представляют собой треть нуклона – примерно так, как протон или нейтрон представляют четверть ядра гелия или 1/12 ядра углерода. Если бы этот рисунок был правдив, кварки в нуклоне двигались бы относительно медленно (со скоростями гораздо меньшими световой) с относительно слабыми взаимодействиями, действующими между ними (хотя и при наличии некоей мощной силы, удерживающей их на месте). Масса кварка, верхнего и нижнего, составляла бы тогда порядка 0,3 ГэВ/с 2 , примерно треть массы протона. Но это простое изображение и навязываемые им идеи просто неверны.

Рис. 3. даёт совершенно другое представление о протоне, как о котле частиц, снующих в нём со скоростями, близкими к световой. Эти частицы сталкиваются друг с другом, и в этих столкновениях некоторые из них аннигилируют, а другие создаются на их месте. Глюоны не имеют массы, массы верхних кварков составляют порядка 0,004 ГэВ/с 2 , а нижних – порядка 0,008 ГэВ/с 2 - в сотни раз меньше протона. Откуда берётся энергия массы протона, вопрос сложный: часть её идёт от энергии массы кварков и антикварков, часть – от энергии движения кварков, антикварков и глюонов, а часть (возможно, положительная, возможно, отрицательная) из энергии, хранящейся в сильном ядерном взаимодействии, удерживающем кварки, антикварки и глюоны вместе.

В некотором смысле рис. 2 пытается устранить разницу между рис. 1 и рис. 3. Он упрощает рис. 3, удаляя множество пар кварк-антикварк, которые, в принципе, можно назвать эфемерными, поскольку они постоянно возникают и исчезают, и не являются необходимыми. Но она производит впечатление того, что глюоны в нуклонах являются непосредственной частью сильного ядерного взаимодействия, удерживающего протоны. И она не объясняет, откуда берётся масса протона.

У рис. 1 есть другой недостаток, кроме узких рамок протона и нейтрона. Она не объясняет некоторые свойства других адронов, к примеру, пиона и ро-мезона . Те же проблемы есть и у рис. 2.

Эти ограничения и привели к тому, что своим студентам и на моём сайте, я даю картинку с рис. 3. Но хочу предупредить, что и у неё есть множество ограничений, которые я рассмотрю позже.

Стоит отметить, что чрезвычайную сложность строения, подразумеваемая рис. 3, стоило ожидать от объекта, который удерживает вместе такая мощная сила, как сильное ядерное взаимодействие. И ещё одно: три кварка (два верхних и один нижний у протона), не являющиеся частью группы пар кварков-антикварков, часто называют «валентными кварками», а пары кварков-антикварков – «морем кварковых пар». Такой язык во многих случаях технически удобен. Но он даёт ложное впечатление того, что если бы вы смогли заглянуть внутрь протона, и посмотрели на определённый кварк, вы сразу смогли бы сказать, является ли он частью моря или валентным. Этого сделать нельзя, такого способа просто нет.

Масса протона и масса нейтрона

Поскольку массы протона и нейтрона так похожи, и поскольку протон и нейтрон отличаются только заменой верхнего кварка нижним, кажется вероятным, что их массы обеспечиваются одним и тем же способом, исходят из одного источника, и их разница заключается в небольшом отличии между верхним и нижним кварками. Но три приведённых рисунка говорят о наличии трёх очень разных взглядов на происхождение массы протона.

Рис. 1 говорит о том, что верхний и нижний кварки просто составляют по 1/3 от массы протона и нейтрона: порядка 0,313 ГэВ/с 2 , или из-за энергии, необходимой для удержания кварков в протоне. И поскольку разница между массами протона и нейтрона составляет долю процента, разница между массами верхнего и нижнего кварка тоже должна составлять долю процента.

Рис. 2 менее понятен. Какая часть массы протона существует благодаря глюонам? Но, в принципе, из рисунка следует, что большая часть массы протона всё равно происходит от массы кварков, как на рис. 1.

Рис. 3 отражает более тонкий подход к тому, как на самом деле появляется масса протона (как мы можем проверить напрямую через компьютерные вычисления протона, и не напрямую с использованием других математических методов). Он сильно отличается от идей, представленных на рис. 1 и 2, и оказывается не таким простым.

Чтобы понять, как это работает, нужно думать не в терминах массы m протона, но в терминах его энергии массы E = mc 2 , энергии, связанной с массой. Концептуально правильным вопросом будет не «откуда взялась масса протона m», после которого вы можете подсчитать E, умножив m на c 2 , а наоборот: «откуда берётся энергия массы протона E», после которого можно подсчитать массу m, разделив E на c 2 .

Полезно классифицировать взносы в энергию массы протона по трём группам:

А) Энергия массы (энергия покоя) содержащихся в нём кварков и антикварков (глюоны, безмассовые частицы, никакого вклада не делают).
Б) Энергия движения (кинетическая энергия) кварков, антикварков и глюонов.
В) Энергия взаимодействия (энергия связи или потенциальная энергия), хранящаяся в сильном ядерном взаимодействии (точнее, в глюонных полях), удерживающих протон.

Рис. 3 говорит о том, что частицы внутри протона двигаются с большой скоростью, и что в нём полно безмассовых глюонов, поэтому вклад Б) больше А). Обычно, в большинстве физических систем Б) и В) оказываются сравнимыми, при этом В) часто отрицательно. Так что энергия массы протона (и нейтрона) в основном получается из комбинации Б) и В), а А) вносит малую долю. Поэтому массы протона и нейтрона появляются в основном не из-за масс содержащихся в них частиц, а из-за энергий движения этих частиц и энергии их взаимодействия, связанной с глюонными полями, порождающими силы, удерживающие протон. В большинстве других знакомых нам систем баланс энергий распределён по-другому. К примеру, в атомах и в Солнечной системе доминирует А), а Б) и В) получаются гораздо меньше, и сравнимы по величине.

Подводя итоги, укажем, что:

  • Рис. 1 предполагает, что энергия массы протона происходит из вклада А).
  • Рис. 2 предполагает, что важны оба вклада А) и В), и немного своей доли вносит Б).
  • Рис. 3 предполагает, что важны Б) и В), а вклад А) оказывается незначительным.
Нам известно, что верен рис. 3. Для его проверки мы можем провести компьютерные симуляции, и, что более важно, благодаря различным убедительным теоретическим аргументам, мы знаем, что если бы массы верхнего и нижнего кварков были нулевыми (а всё остальное осталось, как есть), масса протона практически не изменилась бы. Так что, судя по всему, массы кварков не могут делать важные вклады в массу протона.

Если рис. 3 не врёт, массы кварка и антикварка очень малы. Какие они на самом деле? Масса верхнего кварка (как и антикварка) не превышает 0,005 ГэВ/с 2 , что гораздо меньше, чем 0,313 ГэВ/с 2 , который следует из рис. 1. (Массу верхнего кварка тяжело измерить, и это значение меняется из-за тонких эффектов, так что она может оказаться гораздо меньшей, чем 0,005 ГэВ/с 2). Масса нижнего кварка примерно на 0,004 ГэВ/с 2 больше массы верхнего. Это значит, что масса любого кварка или антикварка не превышает одного процента массы протона.

Обратите внимание, что это означает (противореча рис. 1), что отношение массы нижнего кварка к верхнему не приближается к единице! Масса нижнего кварка как минимум в два раза превышает массу верхнего. Причина того, что массы нейтрона и протона так похожи, не в том, что похожи массы верхнего и нижнего кварков, а в том, что массы верхнего и нижнего кварков очень малы – и разница между ними мала, по отношению к массам протона и нейтрона. Вспомните, что для превращения протона в нейтрон, вам нужно просто заменить один из его верхних кварков на нижний (рис. 3). Этой замены достаточно для того, чтобы сделать нейтрон немного тяжелее протона, и поменять его заряд с +е на 0.

Кстати, тот факт, что различные частицы внутри протона сталкиваются друг с другом, и постоянно появляются и исчезают, не влияет на обсуждаемые нами вещи – энергия сохраняется в любом столкновении. Энергия массы и энергия движения кварков и глюонов может меняться, как и энергия их взаимодействия, но общая энергия протона не меняется, хотя всё внутри него постоянно меняется. Так что масса протона остаётся постоянной, несмотря на его внутренний вихрь.

На этом моменте можно остановиться и впитать полученную информацию. Поразительно! Практически вся масса, содержащаяся в обычной материи, происходит из массы нуклонов в атомах. И большая часть этой массы происходит из хаоса, присущего протону и нейтрону – из энергии движения кварков, глюонов и антикварков в нуклонах, и из энергии работы сильных ядерных взаимодействий, удерживающих нуклон в целом состоянии. Да: наша планета, наши тела, наше дыхание являются результатом такого тихого, и, до недавнего времени, невообразимого столпотворения.

Водорода, элемента, который имеет наиболее простое строение. Оно имеет положительный заряд и практически неограниченное время жизни. Это самая стабильная частица во Вселенной. Протоны, образовавшиеся в результате Большого Взрыва, до сих пор не распались. Масса протона составляет 1,627*10-27 кг или 938,272 эВ. Чаще эту величину выражают в электронвольтах.

Протон был открыт «отцом» ядерной физики Эрнестом Резерфордом. Он выдвинул гипотезу о том, что ядра атомов всех химических элементов состоят из протонов, так как по массе они превышают ядро атома водорода в целое число раз. Резерфорд поставил интересный опыт. В те времена уже была открыта естественная радиоактивность некоторых элементов. С помощью альфа-излучения (альфа-частицы представляют собой ядра гелия с высокими энергиями) ученый облучал атомы азота. В результате такого взаимодействия вылетала частица. Резерфорд предположил, что это протон. Дальнейшие опыты в пузырьковой камере Вильсона подтвердили его предположение. Так в 1913 году была открыта новая частица, но гипотеза Резерфорда о составе ядра оказалась несостоятельной.

Открытие нейтрона

Великий ученый нашел ошибку в своих расчетах и выдвинул гипотезу о существовании еще одной частицы, входящей в состав ядра и обладающей практически той же массой, что и протон. Экспериментально он не смог ее обнаружить.

Это сделал в 1932 году сделал английский ученый Джеймс Чедвик. Он поставил опыт, в ходе которого бомбардировал атомы бериллия высокоэнергетическими альфа-частицами. В результате ядерной реакции из ядра бериллия вылетала частица, впоследствии названная нейтроном. За свое открытие Чедвик уже через три года получил Нобелевскую премию.

Масса нейтрона действительно мало отличается от массы протона (1,622*10-27 кг), но эта частица не обладает зарядом. В этом смысле она нейтральна и в то же время способна вызывать деление тяжелых ядер. Из-за отсутствия заряда нейтрон может легко пройти через высокий кулоновский потенциальный барьер и внедриться в структуру ядра.

Протон и нейтрон обладают квантовыми свойствами (могут проявлять свойства частиц и волн). Нейтронное излучение используют в медицинских целях. Высокая проникающая способность позволяет этому излучению ионизировать глубинные опухоли и другие злокачественные образования и обнаруживать их. При этом энергия частиц относительно маленькая.

Нейтрон, в отличие от протона, нестабильная частица. Ее время жизни составляет около 900 секунд. Она распадается на протон, электрон и электронное нейтрино.

Источники:

  • Открытие протона и нейтрона

Очень часто в разных ситуациях люди слышат слово протон, а также ядро, нейтрон, электрон. Не всегда ученики и даже взрослые люди знают, откуда пошло это название и когда мир узнал про такие элементы.

Прошло большое количество времени прежде, чем ученые согласились, что все вещества состоят из молекул. Со временем даже смогли установить, что в своем составе атомы. После чего возник вопрос, из чего состоит атом. Атом включает в себя ядро и некоторое количество электронов, которые вращаются вокруг ядра.

Ядро атома водорода

Резерфорд, который был одним из первооткрывателем данного раздела физики и всю свою жизнь работал над развитием данного направления, предполагал, что в составе ядра любого химического элемента находится ядро водорода, что и сумел подтвердить с помощью опытов.

Эти опыты требовали значительной подготовки, и, проводя эксперименты, ученный и его ученики, часто приносили в жертву свое здоровье. Опыт проводился таким образом: с помощью альфа- происходила бомбардировка атомов азота. В итоге из ядер атомов азота выбивались разные частицы, которые фиксировались на светочувствительной пленке. Из-за слабого свечения Резерфорду приходилось по восемь часов сидеть в комнате без освещения, чтобы глаза лучше фиксировали световые следы.

Благодаря этим экспериментам Резерфорд смог по следам выбивания определить, что в атоме любого вещества есть именно атомы водорода и кислорода.

Протон

Частицу протон Резерфорд в 1919 году при проведении опыта, который доказал наличие в любом химическом элементе ядра атома водорода. Протон по сути является электроном, но с положительным знаком, он уравновешивает количество электронов, в такой ситуации атом называется нейтральным или незаряженным.

Название протон происходит от «протос», которое переводится с греческого как первый. Изначально, данную частицу хотели назвать от греческого слова «барос», которое означает тяжесть. Но в итоге было принято решение, что «протон» лучше описывает все качества данного элемента. Важно помнить, что масса протона приблизительно в 1840 раз больше, чем .

Нейтрон

Нейтрон также является одним из элементов атома. Данный элемент открыл Чедвик, после того как провел серию бомбардировок над ядром атома . При такой бомбардировке вылетали элементы, которые никак не реагировали на электрическое поле, поэтому их в итоге и назвали нейтронами.

Вселенная, которую порой называют космосом, состоит из галактик, то есть звездных систем. Сегодня есть различные гипотезы о возникновении Вселенной, но нет ни одного научно доказанного факта. Все эти теории строятся на основании предположений и расчетов различных ученых.

Инструкция

Основоположником изучения Вселенной стал польский астроном Николай Коперник, написавший труд о гелиоцентрической системе, в котором говорилось, что Земля является частью большой . В последующие времена труды Н. Коперника совершенствовали и дополняли другие ученые, но именно поляк сумел дать человечеству базовые знания о космическом мироустройстве.

Наиболее всестороннее и полное изучение Вселенной началось лишь в 20 веке. Это было связано с развитием технологий в науке. На данный момент известно, что основной химический элемент, который входит в состав Вселенной, - это водород. Его объем составляет 75% от общего условного объема, на втором месте стоит гелий, объем которого составляет 23%. Остальное занимают незначительные химические примеси. Долгие годы человечество наблюдает за развитием Вселенной для того, чтобы понять причины ее возникновения.

Протоны и нейтроны

Все окружающие нас предметы состоят из молекул, которые, в свою очередь, образуются из атомов, то есть мельчайших частиц химических элементов. Несмотря на исключительно малые размеры, атомы представляют собой весьма сложные образования, включающие центральное тяжелое ядро и легкую оболочку из электронов, число которых обычно равно порядковому номеру элемента в менделеевской периодической системе. В ядре сосредоточена почти вся масса атома. Оно также имеет очень сложное строение. Основными «кирпичиками», из которых построены ядра, являются протоны и нейтроны.
Протон - это ядро атома водорода, самого легкого химического элемента, занимающего в таблице Д. И. Менделеева первое место и в соответствии с этим имеющего в электронной оболочке всего лишь один электрон. Если ионизовать атом водорода, то есть удалить его единственный электрон, то останется ядро, которое из-за отсутствия оболочки можно назвать «голым» ядром и которое как раз и будет протоном (от греческого слова «протос» - первый).
Протон - положительно заряженная частица, причем заряд его по величине в точности равен заряду электрона. Масса протона выражается цифрой в 1,6-10 -24 грамма. Это значит, что масса тысячи миллионов протонов в 10 тысяч раз меньше одной стомиллионной доли миллиграмма. И все же эта «элементарная» частица относится к разряду «тяжелых», ибо масса ее в 1836,6 раза больше массы электрона. Очень невелики и размеры протона: его диаметр в 100 тысяч раз меньше диаметра атома, равного примерно одной стомиллионной сантиметра. Вследствие этого плотность вещества протона, несмотря на его ничтожно малую массу, огромна. Если бы кубик с ребром в 1 миллиметр удалось наполнить этими частицами так, чтобы они целиком заняли весь объем, касаясь друг друга, то такой кубик весил бы 120 тысяч тонн! Конечно, в действительности осуществить подобный эксперимент нельзя. Протоны, будучи одноименно заряженными частицами, отталкиваются друг от друга, и нужны колоссальные силы, чтобы сблизить их. Однако есть звезды, на которых существуют условия, благоприятные для сравнительно близкого подхода протонов друг к другу. Эти звезды (например, звезда ванн - Маанена в созвездии Рыб) отличаются чрезвычайно высокой плотностью вещества, хотя она, разумеется, в миллионы раз меньше, чем в рассмотренном нами случае кубика, состоящего из одних протонов.
Тот факт, что в состав атомных ядер входят протоны, был доказан в результате опытов, проведенных в 1919 году английским физиком Резерфордом. В этих опытах он использовал поток быстрых альфа - частиц (то есть ядер атомов гелия), образующихся в процессе радиоактивного распада радия С. При бомбардировке альфа - частицами ядер азота обнаружилось, что последние испускали какие-то быстрые частицы с одновременным вылетом в противоположном направлении медленных тяжелых частиц. При изучении этого явления в камере Вильсона было установлено, что быстрые частицы представляют собой протоны, а медленные - ядра кислорода. Выяснилось, что ядро азота, захватывая одну альфа - частицу, преобразуется в ядро кислорода с испусканием одного протона. Бомбардировка альфа - частицами ядер атомов других элементов подтвердила наличие протонов и в этих ядрах.
Однако ядра (за исключением ядра водорода) не могут состоять только из одних протонов. Действительно, ядро атома гелия, занимающего второе место в таблице Д. И. Менделеева, имеет заряд, равный заряду двух протонов, а его масса больше массы протона в четыре раза. Точно так же заряд ядра кислорода равен восьми зарядам протона, а масса этого ядра в шестнадцать раз больше массы протона. Объяснение такого расхождения было найдено после открытия новой «элементарной» частицы - так называемого нейтрона.
В 1930 году ученые установили, что при бомбардировке альфа-частицами некоторых элементов (бериллия, бора и других) появляется излучение из незаряженных частиц, способное проникать через слой свинца сравнительно большей толщины (до 5 сантиметров). В 1931 году французские физики Ирэн и Фредерик Жолио - Кюри обнаружили, что если на пути этого излучения поместить вещество, молекулы которого содержат большое число водородных атомов (например, парафин), то из него начинают вылетать протоны.
Можно было бы предположить, что вновь открытое излучение состоит из фотонов. Однако для того, чтобы иметь возможность выбивать из парафина протоны, эти фотоны должны были бы обладать энергией около 50 миллионов электрон вольт. В последнем случае они проникали бы через значительно большие толщи свинца, чем наблюдалось на опыте (для прохождения фотона через 5 сантиметров свинца нужна энергия всего лишь в 5 миллионов электрон - вольт). Возникшее противоречие было решено в результате работ английского ученого Чадвика. Он показал, что вылетающие из парафина протоны, а также ядра, испускаемые под воздействием неизвестного излучения другими атомами, движутся так, будто они выбиты не фотоном, а тяжелой частицей, масса которой приблизительно равна массе протона. Таким образом, усилиями ряда физиков было установлено существование незаряженной тяжелой частицы - нейтрона. Масса нейтрона в 1839 раз больше массы электрона, но в отличие от протона (и электрона) его заряд равен нулю. Именно поэтому нейтроны обладают способностью проникать через толстые слои свинца.
Незаряженная частица может попасть внутрь атома, не испытывая ни отталкивания, ни притяжения со стороны заряженных частиц (электронов и ядра) и не тратя своей энергии на преодоление действия электрических сил, на ионизацию атомов. Отсюда и путь нейтрона, в каком - либо веществе при прочих равных условиях длиннее, чем, например, протона. Вследствие неспособности нейтрона производить ионизацию его очень трудно заметить, что явилось причиной сравнительно позднего обнаружения этой частицы.
Открытие нейтрона позволило понять, почему вес атомных ядер превышает вес содержащихся в них протонов. Советские ученые Д. Д. Иваненко и Е. Д. Гапон выдвинули идею о протоно - нейтронном строении ядер, которая ныне является общепринятой. Согласно этой точке зрения, в ядре гелия находятся, кроме двух протонов, еще два нейтрона, и поэтому его заряд равен двум, а масса в четыре раза больше массы протона (или почти равной ей массы нейтрона). Точно так же и в других ядрах, помимо протонов, присутствуют нейтроны. При ядерных расщеплениях, вызываемых, например, попаданием в ядро быстрой альфа-частицы, может происходить испускание нейтронов. Этот процесс как раз и послужил первым указанием на существование последних.
Не имеющий заряда нейтрон легко может проникать не только внутрь атома, но даже и внутрь ядра. Попадание нейтрона в тяжелое ядро приводит в ряде случаев к разрушению последнего, в результате чего образуются более легкие ядра и выделяется весьма значительное количество внутриядерной энергии. Свойство нейтронов производить ядерные расщепления используется для получения атомной (правильнее было бы сказать - ядерной) энергии.
Большая проникающая способность нейтронов, наряду со способностью разрушать ядра, обусловливает их опасное действие на живые существа. Достаточно мощный поток нейтронов, попав во внутренние части организма, выбивает из ядер быстрые протоны и другие заряженные частицы, которые, ионизуя встречающиеся на их пути атомы сложных органических молекул, способствуют разложению последних и тем самым нарушению жизнедеятельности растения или животного. Однако разрушительные свойства нейтронов можно использовать для блага людей. Ведь именно с помощью этих частиц ученые открыли прежде недоступные природные кладовые внутриядерной энергии: Разбивая ядра, нейтроны высвобождают эту энергию, которую у нас в Советском Союзе уже применяют в мирных целях. Кроме того, некоторые химические элементы после бомбардировки нейтронами превращаются в искусственные радиоактивные вещества, находящие все более широкое распространение в медицине, при изучении жизнедеятельности организмов методом меченых атомов, в технике и т. п.
В настоящее время существует много способов получения нейтронов, необходимых для проведения различных исследований в области ядерной физики и для ряда практических применений. Самым старым из этих способов является изготовление так называемого радий - бериллиевого источника. Стеклянный или металлический сосудик заполняют порошком бериллия в смеси с какой-либо солью радия (например, бромистым радием). При радиоактивном распаде из ядер радия вылетают альфа-частицы, которые, взаимодействуя с ядрами бериллия, выбивают из них нейтроны. Последние благодаря большой проникающей способности свободно проходят через стенки сосуда.
После изобретения специальных устройств - ускорителей (циклотронов, фазотронов, синхрофазотронов и других), сообщающих заряженным частицам большие энергии, появилась возможность получать нейтроны искусственным путем. Для этого пучок ускоренных в циклотроне или другой подобной машине заряженных тяжелых частиц, скажем, дейтронов (ядер тяжелого водорода), направляют на мишень, сделанную из определенного вещества (например, из лития). В результате из ядер атомов мишени выбиваются нейтроны. Меняя энергию бомбардирующих мишень «снарядов», можно получать нейтроны различной энергии.
Еще одним мощным источником тяжелых незаряженных частиц являются ядерные реакторы (котлы), в которых осуществляются цепные реакции деления тяжелых ядер. При этом образуется большое число нейтронов, выходящих из котла наружу.
Нейтроны, как и другие «элементарные» частицы (электроны, протоны), обладают волновыми свойствами. Пучок нейтронов, подобно свету (потоку фотонов) 3, испытывает отражение, дифракцию, поляризуется и т. п. Поэтому тяжелые незаряженные частицы можно использовать для изучения строения кристаллов (путем их просвечивания нейтронным пучком) так же, как используются рентгеновские лучи. Некоторую трудность представляет регистрация нейтронов, ибо они не производят ионизации и потому нельзя заметить их прохождения через камеру Вильсона, счетчик, ионизационную камеру я другие приборы, применяющиеся обычно для обнаружения и счета заряженных частиц. Не оставляют следов нейтроны и в фотоэмульсиях. Однако свойство нейтронов разрушать ядра, вызывать ядерные реакции дает нам в руки способ для регистрации этих частиц. В обычный счетчик или ионизационную камеру добавляют газ, содержащий ядра бора. Нейтроны расщепляют эти ядра, при этом вылетают альфа-частицы, создающие разряды в счетчике или ионизационный ток в камере, что позволяет фиксировать поток нейтронов. Можно воспользоваться для обнаружения нейтронов фотоэмульсиями, к которым подмешаны соли лития или бара. При попадании нейтрона в ядро атома какого - либо из этих элементов происходит расщепление ядра с вылетом быстрой заряженной частицы, след которой виден в фотоэмульсии.

Несмотря на то, что между протонами и нейтронами имеется существенное различие, заключающееся в отсутствии заряда у последних, в других отношениях они очень похожи друг на друга. Массы этих частиц почти в точности равны, а их поведение внутри ядра (величина и характер ядерных сил, действующих между протонами, между нейтронами и между теми и другими) также примерно одинаково. Дело в том, что протоны, как одноименно заряженные частицы, должны отталкиваться в ядре друг от друга. Поскольку все же ядра существуют в виде устойчивых образований, очевидно, что протоны удерживаются в них какими-то силами, превышающими электростатические силы отталкивания. Оказалось, что эти специфические ядерные силы действуют не только между протонами и между нейтронами, но и связывают друг с другом частицы обоих этих видов. Это значит, что протоны и нейтроны ядра определенным образом взаимодействуют друг с другом (хотя физическая природа такого взаимодействия еще далеко не выяснена). Учеными было также обнаружено, что обе частицы могут превращаться друг в друга. Так, в ядре происходит превращение нейтрона в протон с испусканием отрицательно заряженного электрона и еще одной незаряженной легкой частицы -нейтрино (масса нейтрино меньше 1:400 массы электрона). Имеет место и другой процесс: протон в ядре переходит в нейтрон с вылетом положительно заряженного электрона (позитрона) и нейтрино. Все эти явления, наблюдаемые при распаде некоторых радиоактивных ядер, получили одно общее название бета - распада.
С точки зрения теории бета - распада, нейтрон и протон ничем не различаются: и тот и другой хорошо превращаются друг в друга. По этой причине обе частицы нередко называют просто нуклонами. Следует, правда, подчеркнуть, что если в ядре все нуклоны ведут себя по отношению к бета- распаду одинаково, то в свободном состоянии, вне ядра, протоны и нейтроны проявляют различные свойства. Протон сам по себе - устойчивая, или, как говорят иначе, стабильная частица, в то время как свободный нейтрон самопроизвольно распадается с периодом полураспада примерно в 20 минут. При этом он превращается в протон и испускает, как и при распаде внутри ядра, электрон и нейтрино.
Различие между протоном и нейтроном в свободном состоянии обусловлено рядом причин. Одной из них является то, что для превращения протона в нейтрон нужно затратить значительную энергию (во всяком случае большую, чем 1,9 миллиона электрон - вольт). Поскольку свободному протону неоткуда позаимствовать эту энергию, он и представляет собой стабильную частицу. Что же касается нейтрона, то он обладает большей массой, чем протон, и, следовательно, большим запасом энергии. При превращении нейтрона в протон выделяется приблизительно 800 тысяч электронвольт энергии. Поэтому свободные нейтроны отличаются свойством радиоактивности.
Протоны, нейтроны, нейтрино, так же как фотоны и электроны, встречаются в космических лучах. В частности, протоны составляют так называемую первичную компоненту космического излучения, то есть приходят на Землю из межзвездного пространства. Разумеется, нейтроны, которые в свободном состоянии превращаются в протоны, не могут присутствовать в первичном излучении. Однако они образуются в атмосфере при столкновении первичных протонов (и более тяжелых ядер) с ядрами атомов азота, кислорода и других газов воздушной оболочки нашей планеты. Протоны космических лучей обладают колоссальной энергией и поэтому могут, несмотря на наличие положительного заряда, легко проникать в ядра атомов. При столкновении нуклонов, обладающих такой гигантской энергией, происходят процессы, которые не наблюдаются при взаимодействии нуклонов меньшей энергии. Например, при таких столкновениях происходит рождение новых частиц - мезонов различных масс.
Описанные выше факты взаимодействия нуклонов в ядре совсем не означают, будто нейтрон состоит из протона и электрона или, наоборот, протон содержит в себе нейтрон и позитрон. Суть бета - распада заключается именно в том, что нейтрон превращается в три другие частицы (протон, электрон, нейтрино) или протон превращается в нейтрон, позитрон и нейтрино. Эти процессы происходят при строгом соблюдении законов сохранения энергии, массы, количества движения, заряда и т. п. и убедительно свидетельствуют об изменчивости «элементарных» частиц и наличии глубокой связи между ними.

Нейтрон (элементарная частица)

Данная статья была написана Владимиром Горунович для сайта "Викизнание", помещена на этот сайт в целях защиты информации от вандалов, а затем дополнена на этом сайте.

Полевая теория элементарных частиц, действуя в рамках НАУКИ, опирается на проверенный ФИЗИКОЙ фундамент:

  • Классическую электродинамику,
  • Квантовую механику,
  • Законы сохранения - фундаментальные законы физики.
В этом принципиальное отличие научного подхода, использованного полевой теорией элементарных частиц - подлинная теория должна строго действовать в рамках законов природы: в этом и заключается НАУКА.

Использовать не существующие в природе элементарные частицы, выдумывать не существующие в природе фундаментальные взаимодействия, или подменять существующие в природе взаимодействия сказочными, игнорировать законы природы, занимаясь математическими манипуляциями над ними (создавая видимость науки) - это удел СКАЗОК, выдаваемых за науку . В итоге физика скатывалась в мир математических сказок.

    1 Радиус нейтрона
    2 Магнитный момент нейтрона
    3 Электрическое поле нейтрона
    4 Масса покоя нейтрона
    5 Время жизни нейтрона
    6 Новая физика: Нейтрон (элементарная частица) - итог

Нейтрон - элементарная частица квантовое число L=3/2 (спин = 1/2) - группа барионов, подгруппа протона, электрический заряд +0 (систематизация по полевой теории элементарных частиц).

Согласно полевой теории элементарных частиц (теории - построенной на научном фундаменте и единственной получившей правильный спектр всех элементарных частиц), нейтрон состоит из вращающегося поляризованного переменного электромагнитного поля с постоянной составляющей. Все голословные утверждения Стандартной модели о том, что нейтрон якобы состоит из кварков, не имеют ничего общего с действительностью . - Физика экспериментально доказала, что нейтрон обладает электромагнитными полями (нулевая величина суммарного электрического заряда, еще не означает отсутствие дипольного электрического поля, что косвенно вынуждена была признать даже Стандартная модель, введя электрические заряды у элементов структуры нейтрона), и еще гравитационным полем. О том, что элементарные частицы не просто обладают - а состоят из электромагнитных полей, физика гениально догадалась еще 100 лет назад, но вот построить теорию никак не удавалось до 2010 года. Теперь в 2015 году появилась еще и теория гравитации элементарных частиц, установившая электромагнитную природу гравитации и получившая уравнения гравитационного поля элементарных частиц, отличные от уравнений гравитации, на основании которых была построена не одна математическая сказка в физике.

Структура электромагнитного поля нейтрона (E-постоянное электрическое поле,H-постоянное магнитное поле, желтым цветом отмечено переменное электромагнитное поле).

Энергетический баланс (процент от всей внутренней энергии):

  • постоянное электрическое поле (E) - 0,18%,
  • постоянное магнитное поле (H) - 4,04%,
  • переменное электромагнитное поле - 95,78%.
Наличие мощного постоянного магнитного поля объясняет обладание нейтроном ядерными силами. Структура нейтрона приведена на рисунке.

Несмотря на нулевой электрический заряд, нейтрон обладает дипольным электрическим полем.

1 Радиус нейтрона

Полевая теория элементарных частиц определяет радиус (r) элементарной частицы как расстояние от центра до точки в которой достигается максимум плотности массы.

Для нейтрона это будет 3,3518 ∙10 -16 м. К этому надо добавить еще толщину слоя электромагнитного поля 1,0978 ∙10 -16 м.

Тогда получится 4,4496 ∙10 -16 м. Таким образом, внешняя граница нейтрона должна находиться от центра на расстоянии более 4,4496 ∙10 -16 м. Получилась величина почти равная радиусу протона и это не удивительно. Радиус элементарной частицы определяется квантовым числом L и величиной массы покоя. У обеих частиц одинаковый набор квантовых чисел L и M L , а массы покоя незначительно отличаются.

2 Магнитный момент нейтрона

В противовес квантовой теории полевая теория элементарных частиц утверждает, что магнитные поля элементарных частиц не создаются спиновым вращение электрический зарядов, а существуют одновременно с постоянным электрическим полем как постоянная составляющая электромагнитного поля. Поэтому магнитные поля есть у всех элементарных частиц с квантовым числом L>0.

Полевая теория элементарных частиц не считает магнитный момент нейтрона аномальным - его величина определяется набором квантовых чисел в той степени, в какой квантовая механика работает в элементарной частице.

Так магнитный момент нейтрона создается током:

  • (0) с магнитным моментом -1 eħ/m 0n c
Далее умножаем его на процент энергии переменного электромагнитного поля нейтрона разделенный, на 100 процентов, и переводим в ядерные магнетоны. При этом не следует забывать, что ядерные магнетоны учитывают массу протона (m 0p), а не нейтрона (m 0n), так что полученный результат надо умножить на отношение m 0p /m 0n . В итоге получим 1,91304.

3 Электрическое поле нейтрона

Несмотря на нулевой электрический заряд, согласно полевой теории элементарных частиц у нейтрона должно быть постоянное электрическое поле. У электромагнитного поля, из которого состоит нейтрон, имеется постоянная составляющая, а, следовательно, у нейтрона должны быть постоянное магнитное поле и постоянное электрическое поле. Поскольку электрический заряд равен нулю то постоянное электрическое поле будет дипольным. То есть у нейтрона должно быть постоянное электрическое поле аналогичное полю двух распределенных параллельных электрических зарядов равных по величине и противоположного знака. На больших расстояниях электрическое поле нейтрона будет практически незаметно из-за взаимной компенсации полей обоих знаков заряда. Но на расстояниях порядка радиуса нейтрона это поле будет оказывать существенное влияние на взаимодействия с другими элементарными частицами близких по размерам. Это, прежде всего, касается взаимодействия в атомных ядрах нейтрона с протоном и нейтрона с нейтроном. Для нейтрон - нейтронного взаимодействия это будут силы отталкивания при одинаковом направлении спинов и силы притяжения при противоположном направлении спинов. Для нейтрон - протонного взаимодействия знак силы зависит не только от ориентации спинов, но еще и от смещения между плоскостями вращения электромагнитных полей нейтрона и протона.
Итак, у нейтрона должно быть дипольное электрическое поле двух распределенных параллельных симметричных кольцевых электрических зарядов (+0.75e и -0.75e), среднего радиуса , расположенных на расстоянии

Электрический дипольный момент нейтрона (согласно полевой теории элементарных частиц) равен:

где ħ - постоянная Планка, L - главное квантовое число в полевой теории элементарных частиц, e - элементарный электрический заряд, m 0 - масса покоя нейтрона, m 0~ - масса покоя нейтрона, заключенная в переменном электромагнитном поле, c - скорость света, P - вектор электрического дипольного момента (перпендикулярен плоскости нейтрона, проходит через центр частицы и направлен в сторону положительного электрического заряда), s - среднее расстояние между зарядами, r e - электрический радиус элементарной частицы.

Как видите, электрические заряды близки по величине к зарядам предполагаемых кварков (+2/3e=+0.666e и -2/3e=-0.666e) в нейтроне, но в отличие от кварков, электромагнитные поля в природе существуют, и аналогичной структурой постоянного электрического поля обладает любая нейтральная элементарная частица, независимо от величины спина и... .

Потенциал электрического дипольного поля нейтрона в точке (А) (в ближней зоне 10s > r > s приблизительно), в системе СИ равен:

где θ - угол между вектором дипольного момента P и направлением на точку наблюдения А, r 0 - нормировочный параметр равный r 0 =0.8568Lħ/(m 0~ c), ε 0 - электрическая постоянная, r - расстояние от оси (вращения переменного электромагнитного поля) элементарной частицы до точки наблюдения А, h - расстояние от плоскости частицы (проходящей через ее центр) до точки наблюдения А, h e - средняя высота расположения электрического заряда в нейтральной элементарной частице (равна 0.5s), |...| - модуль числа, P n - величина вектора P n . (В системе СГС отсутствует множитель .)

Напряженность E электрического дипольного поля нейтрона (в ближней зоне 10s > r > s приблизительно), в системе СИ равна:

где n =r /|r| - единичный вектор из центра диполя в направлении точки наблюдения (А), точкой (∙) обозначено скалярное произведение, жирным шрифтом выделены вектора. (В системе СГС отсутствует множитель .)

Компоненты напряженности электрического дипольного поля нейтрона (в ближней зоне 10s>r>s приблизительно) продольная (| |) (вдоль радиус-вектора, проведенного от диполя в данную точку) и поперечная (_|_) в системе СИ:

Где θ - угол между направлением вектора дипольного момента P n и радиус-вектором в точку наблюдения (в системе СГС отсутствует множитель ).

Третья компонента напряженности электрического поля - ортогональная плоскости, в которой лежат вектор дипольного момента P n нейтрона и радиус-вектор, - всегда равна нулю.

Потенциальная энергия U взаимодействия электрического дипольного поля нейтрона (n) с электрическим дипольным полем другой нейтральной элементарной частицы (2) в точке (А) в дальней зоне (r>>s), в системе СИ равна:

где θ n2 - угол между векторами дипольных электрических моментов P n и P 2 , θ n - угол между вектором дипольного электрического момента P n и вектором r , θ 2 - угол между вектором дипольного электрического моментаP 2 и вектором r , r - вектор из центра дипольного электрического момента p n в центр дипольного электрического момента p 2 (в точку наблюдения А). (В системе СГС отсутствует множитель )

Нормировочный параметр r 0 вводится с целью уменьшения отклонения значения E, от рассчитанного с помощью классической электродинамики и интегрального исчисления в ближней зоне. Нормировка происходит в точке, лежащей в плоскости параллельной плоскости нейтрона, удаленной от центра нейтрона на расстояние (в плоскости частицы) и со смещением по высоте на h=ħ/2m 0~ c, где m 0~ - величина массы заключенной в переменном электромагнитном поле покоящегося нейтрона (для нейтрона m 0~ = 0.95784 m. Для каждого уравнения параметр r 0 рассчитывается самостоятельно. В качестве приблизительного значения можно взять полевой радиус:

Из всего вышесказанного следует, что электрическое дипольное поле нейтрона (о существовании которого в природе, физика 20 века и не догадывалась), согласно законам классической электродинамики, будет взаимодействовать с заряженными элементарными частицами .

4 Масса покоя нейтрона

В соответствии с классической электродинамикой и формулой Эйнштейна, масса покоя элементарных частиц с квантовым числом L>0, в том числе и нейтрона, определяется как эквивалент энергии их электромагнитных полей:

где определенный интеграл берется по всему электромагнитному полю элементарной частицы, E - напряженность электрического поля, H - напряженность магнитного поля. Здесь учитываются все компоненты электромагнитного поля: постоянное электрическое поле (которое у нейтрона есть), постоянное магнитное поле, переменное электромагнитное поле. Эта маленькая, но очень емкая для физики формула, на основании которой получены уравнения гравитационного поля элементарных частиц, отправит в утиль не одну сказочную "теорию" - поэтому ее возненавидят некоторые их авторы.

Как следует из приведенной формулы, величина массы покоя нейтрона зависит от условий, в которых нейтрон находится . Так поместив нейтрон в постоянное внешнее электрическое поле (например, атомное ядро), мы повлияем на E 2 , что отразится на массе нейтрона и его стабильности. Аналогичная ситуация возникнет при помещении нейтрона в постоянное магнитное поле. Поэтому некоторые свойства нейтрона внутри атомного ядра, отличаются от тех же свойств свободного нейтрона в вакууме, вдали от полей.

5 Время жизни нейтрона

Установленное физикой время жизни 880 секунд соответствует свободному нейтрону.

Полевая теория элементарных частиц утверждает, что время жизни элементарной частицы зависит от условий, в которых она находится. Поместив нейтрон во внешнее поле (например, магнитное) мы изменяем энергию, содержащуюся в его электромагнитном поле. Можно выбрать направление внешнего поля так, чтобы внутренняя энергия нейтрона уменьшилась. В результате при распаде нейтрона выделится меньше энергии, что затруднит распад и увеличит время жизни элементарной частицы. Можно подобрать такую величину напряженности внешнего поля, что распад нейтрона будет требовать дополнительной энергии и, следовательно, нейтрон станет стабильным. Именно это наблюдается в атомных ядрах (например, дейтерия), в них магнитное поле соседних протонов не допускает распад нейтронов ядра. В прочем при внесении в ядро дополнительной энергии распады нейтронов вновь могут стать возможными.

6 Новая физика: Нейтрон (элементарная частица) - итог

Стандартная модель (опущенная в данной статье, но которая в 20 веке претендовала на истину) утверждает, что нейтрон является связанным состоянием трёх кварков: одного "верхнего" (u) и двух "нижних" (d) кварков (предполагаемая кварковая структура нейтрона: udd). Поскольку наличие кварков в природе экспериментально не доказано, электрический заряд, равный по величине заряду гипотетических кварков в природе не обнаружен, а имеются лишь косвенные свидетельства, которые можно интерпретировать как наличие следов кварков в некоторых взаимодействиях элементарных частиц, но можно и интерпретировать иначе, то утверждение Стандартной модели, что нейтрон обладает кварковой структурой остается всего лишь бездоказательным предположением. Любая модель, в том числе и Стандартная вправе предположить любую структуру элементарных частиц включая нейтрона, но пока на ускорителях не будут обнаружены соответствующие частицы, из которых якобы состоит нейтрон, утверждение модели следует считать не доказанным.

Стандартная модель, описывая нейтрон, вводит не найденные в природе кварки с глюонами (глюоны тоже никто не нашел), не существующие в природе поля и взаимодействия и вступает в противоречие с законом сохранения энергии;

Полевая теория элементарных частиц (Новая физика) описывает нейтрон исходя из существующих в природе полей и взаимодействий в рамках, действующих в природе законов - в этом и заключается НАУКА.

Владимир Горунович

НЕЙТРОН (n) (от лат. neuter - ни тот, ни другой) - элементарная частица с нулевым электрич. зарядом и массой, незначительно большей массы протона. Наряду с протоном под общим назв. нуклон входит в состав атомных ядер. H. имеет спин 1 / 2 и, следовательно, подчиняется Ферми - Дирака статистике (является фермионом). Принадлежит к семейству адра-нов; обладает барионным числом B= 1, т. е. входит в группу барионов .

Открыт в 1932 Дж. Чедвиком (J. Chadwick), показавшим, что жёсткое проникающее излучение, возникающее при бомбардировке ядер бериллия a-частицами, состоит из электрически нейтральных частиц с массой, примерно равной протонной. В 1932 Д. Д. Иваненко и В. Гей-зенберг (W. Heisenberg) выдвинули гипотезу о том, что атомные ядра состоят из протонов и H. В отличие от заряж. частиц, H. легко проникает в ядра при любой энергии и с большой вероятностью вызывает ядерные реакции захвата (n,g), (n,a), (n, p), если баланс энергии в реакции положительный. Вероятность экзотермич. увеличивается при замедлении H. обратно пропорц. его скорости. Увеличение вероятности реакций захвата H. при их замедлении в водородсодержащих средах было обнаружено Э. Ферми (E. Fermi) с сотрудниками в 1934. Способность H. вызывать деление тяжёлых ядер, открытая О. Ганом (О. Hahn) и Ф. Штрасманом (F. Strassman) в 1938 (см. Деление ядер) , послужила основой для создания ядерного оружия и . Своеобразие взаимодействия с веществом медленных H., имеющих де-бройлевскую длину волны порядка атомных расстояний (резонансные эффекты, дифракция и т. д.), служит основой широкого использования нейтронных пучков в физике твёрдого тела. (Классификацию H. по энергиям - быстрые, медленные, тепловые, холодные, ультрахолодные - см. в ст. Нейтронная физика .)

В свободном состоянии H. нестабилен - испытывает B-распад; n p + е - + v e ; его время жизни t n = = 898(14) с, граничная энергия спектра электронов 782 кэВ (см. Бета-распад нейтрона) . В связанном состоянии в составе стабильных ядер H. стабилен (по эксперим. оценкам, его время жизни превышает 10 32 лет). По астр. оценкам, 15% видимого вещества Вселенной представлено H., входящими в состав ядер 4 He. H. является осн. компонентой нейтронных звёзд . Свободные H. в природе образуются в ядерных реакциях, вызываемых a-частицами радиоактивного распада, космическими лучами и в результате спонтанного либо вынужденного деления тяжёлых ядер. Искусств. источниками H. служат ядерные реакторы, ядерные взрывы , ускорители протонов (на ср. энергии) и электронов с мишенями из тяжёлых элементов. Источниками монохроматичных пучков H. с энергией 14 МэВ являются низкоэнергетич. ускорители дейтронов с тритиевой или литиевой мишенью, а в будущем интенсивными источниками таких H. могут оказаться термоядерные установки УТС. (См. .)

Основные характеристики H .

Масса H. т п = 939,5731(27) МэВ/с 2 = = 1,008664967(34) ат. ед. массы 1,675 . 10 -24 г. Разность масс H. и протона измерена с наиб. точностью из энергетич. баланса реакции захвата H. протоном: n + p d + g (энергия g-кванта = 2,22 МэВ), m n - m p = 1,293323 (16) МэВ/с 2 .

Электрический заряд H. Q n = 0. Наиболее точные прямые измерения Q n выполнены по отклонению пучков холодных либо ультрахолодных H. в электростатич. поле: Q n <= 3·10 -21 е (е - заряд электрона). Косв. данные по электрич. нейтральности мак-роскопич. кол-ва газа дают Q n <= 2·10 -22 е .

Спин H. J = 1 / 2 был определён из прямых опытов по расщеплению пучка H. в неоднородном магн. поле на две компоненты [в общем случае число компонент равно (2J + 1)].

Последоват. описание структуры адронов на основе совр. теории сильного взаимодействия - квантовой хромодинамики - пока встречает теоретич. трудности, однако для мн. задач вполне удовлетворит. результаты даёт описание взаимодействия нуклонов, представляемых как элементарные объекты, посредством обмена мезонами. Эксперим. исследование пространств. структуры H. выполняется с помощью рассеяния высокоэнергичных лептонов (электронов, мюонов, нейтрино, рассматриваемых в совр. теории как точечные частицы) на дейтронах. Вклад рассеяния на протоне измеряется в отд. эксперименте и может быть вычтен с помощью определ. вычислит. процедуры.

Упругое и квазиупругое (с расщеплением дейтрона) рассеяние электронов на дейтроне позволяет найти распределение плотности электрич. заряда и магн. момента H. (формфактор H.). Согласно эксперименту, распределение плотности магн. момента H. с точностью порядка неск. процентов совпадает с распределением плотности электрич. заряда протона и имеет среднеквадратичный радиус ~0,8·10 -13 см (0,8 Ф). Магн. форм-фактор H. довольно хорошо описывается т. н. диполь-ной ф-лой G M n = m n (1 + q 2 /0,71) -2 , где q 2 - квадрат переданного импульса в единицах (ГэВ/с) 2 .

Более сложен вопрос о величине электрич. (зарядового) формфактора H. G E n . Из экспериментов по рассеянию на дейтроне можно сделать заключение, что G E n (q 2 ) <= 0,1 в интервале квадратов переданных импульсов (0-1) (ГэВ/с) 2 . При q 2 0 вследствие равенства нулю электрич. заряда H. G E n -> 0, однако экспериментально можно определить дG E n (q 2 )/дq 2 | q 2=0 . Эта величина наиб. точно находится из измерений длины рассеяния H. на электронной оболочке тяжёлых атомов. Осн. часть такого взаимодействия определяется магн. моментом H. Наиб. точные эксперименты дают длину ne-рассеяния а nе = -1,378(18) . 10 -16 см, что отличается от расчётной, определяемой магн. моментом H.: a nе = -1,468 . 10 -16 см. Разность этих значений даёт среднеквадратичный электрич. радиус H. <r 2 E n >= = 0,088(12) Фили дG E n (q 2)/дq 2 | q 2=0 = -0,02 F 2 . Эти циф-ры нельзя рассматривать как окончательные из-за большого разброса данных разл. экспериментов, превышающих приводимые ошибки.

Особенностью взаимодействия H. с большинством ядер является положит. длина рассеяния, что приводит к коэф. преломления < 1. Благодаря этому H., падающие из вакуума на границу вещества, могут испытывать полное внутр. отражение. При скорости u < (5-8) м/с (ультрахолодные H.) H. испытывают полное отражение от границы с углеродом, никелем, бериллием и др. при любом угле падения и могут удерживаться в замкнутых объёмах. Это свойство ультрахолодных H. широко используется в экспериментах (напр., для поиска ЭДМ H.) и позволяет реализовать нейтронооптич. устройства (см. Нейтронная оптика ).

H. и слабое (электрослабое) взаимодействие . Важным источником сведений об электрослабом взаимодействии является b-распад свободного H. .На квар-ковом уровне этот процесс соответствует переходу . Обратный процесс взаимодействия электронного с протоном, , наз. обратным b-распадом. К этому же классу процессов относится электронный захват ,имеющий место в ядрах, ре - nv e .

Распад свободного H. с учётом кинематич. параметров описывается двумя константами - векторной G V , являющейся вследствие векторного тока сохранения универс. константой слабого взаимодействия, и аксиально-векторной G A , величина к-рой определяется динамикой сильно взаимодействующих компонент нуклона - кварков и глюонов. Волновые ф-ции начального H. и конечного протона и матричный элемент перехода n p благодаря изотопич. инвариантности вычисляются достаточно точно. Вследствие этого вычисление констант G V и G A из распада свободного H. (в отличие от вычислений из b-распада ядер) не связано с учётом ядерно-структурных факторов.

Время жизни H. без учёта нек-рых поправок равно: t n = k(G 2 V + 3G 2 A ) -1 , где k включает кинематич. факторы и зависящие от граничной энергии b-распада кулонов-ские поправки и радиационные поправки .

Вероятность распада поляризов. H. со спином S , энергиями и импульсами электрона и антинейтрино и р е, в общем виде описывается выражением:

Коэф. корреляции a, А, В, D могут быть представлены в виде ф-ции от параметра а = (G A /G V ,)exp(i f). Фаза f отлична от нуля или p, если T -инвариантность нарушена. В табл. приведены эксперим. значения для этих коэф. и вытекающие из них значения a и f.


Имеется заметное отличие данных разл. экспериментов для т n , достигающее неск. процентов.

Описание электрослабого взаимодействия с участием H. при более высоких энергиях гораздо сложнее из-за необходимости учитывать структуру нуклонов. Напр., m - -захват, m - p nv m , описывается по крайней мере удвоенным числом констант. H. испытывает также электрослабое взаимодействие с др. адронами без участия лептонов. К таким процессам относятся следующие.

1) Распады гиперонов L np 0 , S + np + , S - np - и т. д. Приведённая вероятность этих распадов в неск. раз меньше, чем у нестранных частиц, что описывается введением угла Кабиббо (см. Кабиббо угол ).

2) Слабое взаимодействие n - n или n - p, к-рое проявляется как ядерные силы, не сохраняющие пространств. чётность .Обычная величина обусловленных ими эффектов порядка 10 -6 -10 -7 .

Взаимодействие H. со средними и тяжёлыми ядрами имеет ряд особенностей, приводящих в нек-рых случаях к значит. усилению эффектов несохранения чётности в ядрах . Один из таких эффектов - относит. разность сечения поглощения H. с по направлению распространения и против него, к-рая в случае ядра 139 La равна 7% при = 1,33 эВ, соответствуют щей р -волновому нейтронному резонансу. Причиной усиления является сочетание малой энергетич. ширины состояний компаунд-ядра и большой плотности уровней с противоположной чётностью у этого компаунд-ядра, обеспечивающей на 2-3 порядка большее смешивание компонент с разной чётностью, чем у низко лежащих состояний ядер. В результате ряд эффектов: асимметрия испускания g-квантов относительно спина захватываемого поляризов. H. в реакции (n, g), асимметрия вылета заряж. частиц при распаде компаунд-состояний в реакции (n, р) или асимметрия вылета лёгкого (или тяжёлого) осколка деления в реакции (n, f ). Асимметрии имеют величину 10 -4 -10 -3 при энергии тепловых H. В р -волновых нейтронных резонансах реализуется дополнит. усиление, связанное с подавленностью вероятности образования сохраняющей чётность компоненты этого компаунд-состояния (из-за малой нейтронной ширины р -резонанса) по отношению к примесной компоненте с противоположной четностью, являющейся s -резонан-сом. Именно сочетание неск. факторов усиления позволяет крайне слабому эффекту проявляться с величиной, характерной для ядерного взаимодействия.

Взаимодействия с нарушением барионного числа . Теоретич. модели великого объединения и суперобъединения предсказывают нестабильность барионов - их распад в лептоны и мезоны. Эти распады могут быть заметны только для легчайших барионов - p и п, входящих в состав атомных ядер. Для взаимодействия с изменением барионного числа на 1, DB = 1, можно было бы ожидать превращения H. типа: n е + p - , или превращения с испусканием странных мезонов. Поиски такого рода процессов производились в экспериментах с применением подземных детекторов с массой в неск. тысяч тонн. На основании этих экспериментов можно сделать заключение, что время распада H. с нарушением барионного числа составляет более 10 32 лет.

Др. возможный тип взаимодействия с DВ = 2 может привести к явлению взаимопревращения H. и антинейтронов в вакууме, т. е. к осцилляции . В отсутствие внеш. полей или при их малой величине состояния H. и антинейтрона вырождены, поскольку массы их одинаковы, поэтому даже сверхслабое взаимодействие может их перемешивать. Критерием малости внеш. полей является малость энергии взаимодействия магн. момента H. с магн. полем (n и n ~ имеют противоположные по знаку магн. моменты) по сравнению с энергией, определяемой временем T наблюдения H. (согласно соотношению неопределённостей), D <=hT -1 . При наблюдении рождения антинейтронов в пучке H. от реактора или др. источника T есть время пролёта H. до детектора. Число антинейтронов в пучке растёт с ростом времени пролёта квадратично: /N n ~ ~ (T /t осц) 2 , где t осц - время осцилляции.

Прямые эксперименты по наблюдению рождения и в пучках холодных H. от высокопоточного реактора дают ограничение t осц > 10 7 с. В готовящихся экспериментах можно ожидать увеличения чувствительности до уровня t осц ~ 10 9 с. Ограничивающими обстоятельствами являются макс. интенсивность пучков H. и имитация явлений антинейтронов в детекторе космич. лучами.

Др. метод наблюдения осцилляции - наблюдение аннигиляции антинейтронов, к-рые могут образовываться в стабильных ядрах. При этом из-за большого отличия энергий взаимодействий возникающего антинейтрона в ядре от энергии связи H. эфф. время наблюдения становится ~ 10 -22 с, но большое число наблюдаемых ядер (~10 32) частично компенсирует уменьшение чувствительности по сравнению с экспериментом на пучках H. Из данных подземных экспериментов по поиску распада протона об отсутствии событий с энерговыделением ~2 ГэВ можно заключить с нек-рой неопределённостью, зависящей от незнания точного вида взаимодействия антинейтрона внутри ядра, что t осц > (1-3) . 10 7 с. Существ. повышение предела t осц в этих экспериментах затруднено фоном, обусловленным взаимодействием космич. нейтрино с ядрами в подземных детекторах.

Следует отметить, что поиски распада нуклона с DB = 1 и поиски -осцилляции являются независимыми экспериментами, т. к. вызываются принципиально разл. видами взаимодействий.

Гравитационное взаимодействие H . Нейтрон - одна из немногих элементарных частиц, падение к-рой в гравитац. поле Земли можно наблюдать экспериментально. Прямое измерение для H. выполнено с точностью 0,3% и не отличается от макроскопического. Актуальным остаётся вопрос о соблюдении эквивалентности принципа (равенства инертной и гравитац. масс) для H. и протонов.

Самые точные эксперименты выполнены методом Эт-веша для тел, имеющих разные ср. значения отношения A/Z , где А - ат. номер, Z - заряд ядер (в ед. элементарного заряда е) . Из этих опытов следует одинаковость ускорения свободного падения для H. и протонов на уровне 2·10 -9 , а равенство гравитац. и инертной масс на уровне ~10 -12 .

Гравитац. ускорение и замедление широко используются в опытах с ультрахолодными H. Применение гравитац. рефрактометра для холодных и ультрахолодных H. позволяет с большой точностью измерить длины когерентного рассеяния H. на веществе.

H. в космологии и астрофизике

Согласно совр. представлениям, в модели Горячей Вселенной (см. Горячей Вселенной теория )образование барионов, в т. ч. протонов и H., происходит в первые минуты жизни Вселенной. В дальнейшем нек-рая часть H., не успевших распасться, захватывается протонами с образованием 4 He. Соотношение водорода и 4 He при этом составляет по массе 70% к 30%. При формировании звёзд и их эволюции происходит дальнейший нуклеосинтез , вплоть до ядер железа. Образование более тяжёлых ядер происходит в результате взрывов сверхновых с рождением нейтронных звёзд, создающих возможность последоват. захвата H. нуклидами. При этом комбинация т. н. s -процесса - медленного захвата H. с b-распадом между последовательными захватами и r -процесса - быстрого последоват. захвата при взрывах звёзд в осн. может объяснить наблюдаемую распространённость элементов в космич. объектах.

В первичной компоненте космич. лучей H. из-за своей нестабильности вероятно отсутствуют. H., образующиеся у поверхности Земли, диффундирующие в космич. пространство и распадающиеся там, по-видимому, вносят вклад в формирование электронной и протонной компоненты радиационных поясов Земли.

Лит.: Гуревич И. С., Тарасов Л. В., Физика нейтронов низких энергий, M., 1965; Александров Ю. А.,. Фундаментальные свойства нейтрона, 2 изд., M., 1982.





Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта