Главная » Кухня » Движитель морской. Новые типы движителей для плавсредств. Этот интерес обусловлендвумя главными причинами

Движитель морской. Новые типы движителей для плавсредств. Этот интерес обусловлендвумя главными причинами

Дмитрий Анатольевич Крымов - знаменитый сценограф, художник и педагог театрального искусства. Видный представитель Союза художников и Союза театральных деятелей России. Жизнь Дмитрия - это творческий путь настоящего художника, наполненный значимыми достижениями в области живописи и театрального искусства.

Биография Дмитрия Крымова

Дмитрий воспитывался в творческой атмосфере. Отец — знаменитый режиссер-постановщик Анатолий Эфрос. Во времена СССР ему пришлось нелегко: еврейское происхождение мешало карьерному росту, поэтому мальчику дали фамилию матери. Наталья Крымова — талантливый искусствовед и видный театральный критик. Именно она привила тягу к искусству своему сыну с раннего детства.

1976 год знаменателен для Дмитрия окончанием школы-студии при МХАТ и началом профессиональной деятельности. Его карьера началась в Театре на Малой Бронной.

С 1985 до начала 90-х Дмитрий был художником-постановщиком в Театре на Таганке. Девяностые годы негативно отразились на всех отраслях жизни, включая искусство. Крымову пришлось уйти из театральной деятельности и посвятить себя графике и живописи. Его работы высоко ценятся во многих видных музеях России, Англии, Франции, Японии, Германии. Сегодня они являются частью постоянной экспозиции Третьяковской галереи и музея имени Пушкина.

Творческая деятельность Крымова в качестве художника-постановщика особенно ценится в Европейских странах.

В настоящее время Дмитрий преподает в Российской академии театрального искусства. С участием выпускников театральных ВУЗов столицы он ставит драматические спектакли в своей творческой лаборатории. В дальнейшем они представляются на больших фестивалях театрального искусства. На творческом счету лаборатории Крымова десятки успешных постановок. Среди них можно выделить: «Демон. Вид сверху» (авторская трактовка поэмы Лермонтова); «Три сестры»; «Торги» и прочие.

Благодаря совместным усилиям режиссеров Дмитрия Крымова и Михаила Барышникова в 2010 году европейской публике был представлен спектакль «В Париже». Несмотря на русскоязычную постановку, премьера на родине так и не состоялась.

Личная жизнь Дмитрия Крымова

Успешный режиссер и художник живет не только профессиональной деятельностью. Он — глава счастливой семьи.

Жена Инна по образованию является экономистом и социальным психологом. Сейчас она помогает мужу в его творчестве. У супругов есть сын.

Дмитрий уже несколько лет не отмечает свои дни рождения. Вместо этого он посещает могилы родителей, чтобы поблагодарить их за все, что они ему дали.

Движителем называют такое судовое устройство, которое, используя работу двигателя, создает в воде упор - силу, способную двигать судно в заданном направлении.

Движители судов с механическим двигателем делятся на лопастные и водометные .

К числу лопастных судовых движителей относятся гребные винты , крыльчатые движители и гребные колеса , создающие силу упора за счет отбрасывания своими лопастями струи воды в сторону, противоположную движению судна.

Водометные движители создают упор за счет отбрасывания воды, забранной специальным насосом. Так как и лопастные, и водометные движители создают движущую силу за счет реакции отбрасываемых назад масс воды, их называют реактивными. Среди судовых движителей наибольшее распространение получили гребные винты.

Гребной винт (рис. 130) имеет от трех до шести лопастей (чаще четыре-пять), установленных радиально на ступице.

Поверхности лопастей, обращенные в нос судна, называют засасывающими, обращенные в корму - нагнетающими.

В зависимости от направления вращения образующей винтовой поверхности различают винты правого и левого вращения. Если взгляд наблюдателя направлен перпендикулярно к диску винта, то у винта правого вращения правая кромка лопасти, расположенной вертикально вверх, будет находиться от наблюдателя дальше, чем левая. У винта левого вращения -

Рис. 130. Гребной винт (а) и схема его действия (б).

1 - ступица; 2 - лопасть; 3 - обтекатель. V в - окружная скорость элемента

лопасти; ν - скорость поступательного перемещения гребного винта вместе с

судном; V - результирующая скорость от сложения скоростей Vв и ν; α - угол между результирующей скоростью V и хордой элемента лопасти (угол атаки); R - подъемная сила, возникающая на элементе лопасти; Р - упор гребного винта (горизонтальная составляющая силы R); Т - окружная составляющая сил, действующих на гребной винт

Гребные винты изготовляют из нержавеющей стали, бронзы, латуни и их сплавов, а также из капрона, нейлона и стеклопластика (в основном для малых судов).

Гребной винт характеризуют следующие геометрические элементы: диаметр - определяется в зависимости от возможной глубины погружения оси гребного вала (обычно, диаметр гребного винта не превышает 70 % осадки судна в полном грузу); наиболее крупные винты имеют диаметр до 9-10 м; дисковое отношение - отношение площади всех лопастей винта к площади диска винта; может быть больше единицы, но у винтов морских транспортных судов оно обычно равно 0,45-0,60; шаг винта - шаг винтовой поверхности, образующей нагнетающую поверхность лопасти винта.

На засасывающей стороне лопасти при быстром вращении винта благодаря увеличению скорости набегающего потока воды создается разрежение, причем по мере увеличения скорости вращения давление может понизится на столько, что даже в холодной воде начнется образование пузырьков воздуха (известно, что с уменьшением давления температура кипения воды понижается).

Рис. 131. Схема действия Рис. 132. Пропульсивная наделка

направляющей насадки на руль

Такое вскипание холодной воды на засасывающей стороне лопасти называется кавитацией . Начальная стадия кавитации очень опасна для гребных винтов, так как возникающие при вскипании воды пузырьки воздуха, попав в зону более высокого давления, мгновенно конденсируются и производят сильнейшие гидравлические удары по лопасти винта, вызывая эрозию (местное изъязвление поверхности). В этих условиях работа гребного винта недопустима. Однако по мере дальнейшего увеличения скорости вращения винта зона кавитации распространяется уже на всю лопасть и даже выходит за ее пределы - наступает так называемая вторая стадия кавитации, которая не представляет опасности для прочности винта, но зато несколько уменьшает его КПД.

Чтобы устранить кавитацию, увеличивают ширину (площадь) лопастей и глубже погружают сам винт; кроме того, делают гребные винты переменного шага (уменьшая его к комлю и концам лопасти). При проектировании быстроходных винтов, если устранить кавитацию полностью по техническим причинам невозможно, создают условия полностью развитой кавитации (во второй стадии).

Для повышения эффективности гребных винтов применяют направляющие насадки и пропульсивные наделки на руль.

Направляющие насадки бывают неподвижными и поворотными и применяются сейчас не только на малых судах и буксирах, где они особенно эффективны, но и на крупных транспортных судах. Насадка, имеющая в сечении профиль, аналогичный профилю крыла, создает при движении воды дополнительный упор, как это видно из схемы сил, приведенной на рис. 9.29. Кроме того, насадка улучшает условия - винта, в результате чего увеличивается скорость подтекающей воды, уменьшаются концевые потери от перетекания воды через край лопасти и, следовательно, повышается КПД винта (до 20-30 %). Применение направляющей насадки увеличивает скорость на 2-4 %.

Важным преимуществом насадки является выравнивание поля скоростей в диске винта, что уменьшает нагрузки на валопровод.

Пропульсивная наделка на руль (рис. 132) упорядочивает поток воды за ступицей и повышает КПД, а также улучшает условия работы руля.

Винт регулируемого шага (ВРШ) имеет лопасти, поворачивающиеся вокруг их вертикальной оси. Их можно устанавливать под любым углом, образуя шаг, необходимый для данного режима работы судна. ВРШ позволяет не только наивыгоднейшим образом использовать двигатель судна в разных условиях эксплуатации, но и удерживать его на месте, не выключая двигателя, если все лопасти расположены в плоскости диска винта в так называемом нейтральном положении, или осуществлять реверс (задний ход), не меняя направления вращения вала двигателя. Последнее обстоятельство особенно важно при использовании нереверсируемых главных двигателей (газовых и паровых турбин), так как позволяет отказаться от необходимых в этом случае турбин заднего хода или реверсивных муфт.

ВРШ состоит из ступицы, поворотных лопастей, механизма поворота лопастей, расположенного в ступице, механизма изменения шага (МИШ) в кормовой оконечности судна и привода механизма поворота лопастей, располагаемого в валопроводе.

Управляют МИШ дистанционно из рулевой рубки и с крыльев ходового мостика.

Механизм поворота лопастей (рис. 133) состоит из ползуна и шатунов, соединенных с кривошипными дисками, на которых закреплены лопасти. Усилие для поворота лопастей передается через шток в гребном валу на ползун, а от него через шатуны - кривошипным дискам, которые, вращаясь, поворачивают лопасти.

Рис. 133. Схема ВРШ.

1 - ползун; 2 - шатун; 3 - кривошипный диск; 4 - шток; 5 - поршень;

6 - золотниковый регулятор; 7 - привод управления; 8 - масляный насос;

9 - электродвигатель; 10 - масляная цистерна

Движение штоку, на конце которого расположен поршень, передается давлением масла (его можно подавать под одну или другую сторону поршня, в зависимости от необходимого направления изменения шага). Рабочее давление масла создается масляным насосом высокого давления (2,0 МПа или 20 кгс/см 2), работающим от гребного вала или специального электромотора. Направление подачи масла изменяется золотниковым устройством, привод которого связан с постом управления в рулевой рубке.

Применение ВРШ позволяет за счет повышения КПД двигателя в разных условиях эксплуатации снизить на 10-15 % расход топлива и увеличить в среднем на 2-3 % среднюю рейсовую скорость. Возможность быстрого перехода с переднего на задний ход улучшает маневренные качества судна и примерно в 1,5 раза сокращает выбег при экстренном торможении, повышая тем самым безопасность плавания. Важным преимуществом ВРШ является и то, что его съемные лопасти можно легко заменять, не выводя судно из эксплуатации.

К недостаткам ВРШ относятся сложность конструкции, более высокая стоимость и несколько меньший (на 1-3 %), чем у винтов фиксированного шага, КПД из-за большего диаметра ступицы, в которой размещается механизм поворота. Однако, несмотря на эти недостатки, ВРШ является перспективным типом движителя не только для промысловых и технических, но и для крупных транспортных судов: на крупнотоннажных танкерах установлен ВРШ диаметром 7,5 м, на атомном лихтеровозе - 6,8 м, на сухогрузном газотурбоходе - диаметром 5,6 м. Диаметр наиболее крупных ВРШ достигает 9 м.


Рис. 134. Крыльчатый движитель и схема его работы

Крыльчатый движитель (рис. 134) представляет собой диск, вмонтированный заподлицо с днищевой обшивкой и приводящийся во вращение вокруг вертикальной оси судовым двигателем. По окружности диска перпендикулярно к нему расположены четыре - восемь погруженных в воду лопастей, каждая из которых вращается вместе с диском, а также вокруг своей оси. Путем соответствующей установки привода управления поворотом каждой лопасти вокруг своей оси можно при неизменном направлении вращения диска создать упор в любом направлении (см. схему на рис. 134). Поэтому суда, оборудованные крыльчатым движителем, не имеют рулей. Несмотря на сложность изготовления и невысокий КПД, крыльчатые движители незаменимы на тех судах, для которых необходима высокая маневренность при малых скоростях движения (на плавучих кранах, буксирах и пр.). Управление крыльчатым движителем осуществляется из ходовой рубки и с крыльев ходового мостика.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Судовые движители

1. Общие сведения о судовых движителях

Для обеспечения движения судна необходимо приложить к его корпусу движущую силу - силу тяги, равную по величине и противоположную по направлению силе сопротивления среды (воды и воздуха). Такая постоянно действующая на судно сила может быть создана при помощи различных продолжительно работающих источников энергии: мускулов человека, ветра и разного рода двигателей. Для преобразования энергии двигателей в энергию поступательного движения судна используют специальные механизмы, называемые движителями. Таким образом, основным назначением судовых движителей является создание и поддержание требуемой величины тяги Р е. При равномерном прямолинейном движении судна суммарная сила тяги его движителей соответствует сопротивлению движения R и направлена в противоположную сторону: Р е = R.

Подводимая к движителям мощность - суммарная валовая мощность N р должна быть больше полезной (буксировочной) мощности N б = R·v из-за неизбежных потерь при работе комплекса движитель - корпус (§2.1.). Степень совершенства движителя, работающего в сочетании с корпусом, оценивается величиной пропульсивного коэффициента движителя: з д = N р / N б. Чем больше пропульсивный коэффициент движителя, тем он совершеннее. Движители судов должны обладать высокой надежностью, обеспечивать судну высокие пропульсивные качества, работать с минимальным уровнем шума и быть простыми в эксплуатации. Эти требования могут быть реализованы только на судостроительных производствах с высоким уровнем конструкторско-технологической базы. Без преувеличения можно считать судовой движитель одним из самых сложных и дорогостоящим механизмом на судне.

По принципу действия современные судовые движители являются гидрореактивными. Они создают силу тяги за счет реактивного воздействия массы воды, захватываемой движителями и отбрасываемой в направлении, противоположном направлению движения судна. Их отличают только по методу сообщения отбрасываемой жидкости кинетической энергии. Различают лопастные и водопроточные движители. К числу лопастных движителей относятся гребные винты и крыльчатые движители, а к числу водопроточных - водометы.

Рис. 100. Гребной винт: а - фиксированного шага; б - регулируемого шага

Самым распространенным судовым движителем является гребной винт . Это объясняется простотой конструкции гребного винта, малым весом, надежностью и высоким КПД. Пропульсивный коэффициент современных гребных винтов составляет 6065%, в отдельных случаях превышая 75%. На морских судах устанавливают гребные винты диаметром от нескольких дециметров до 11 и более метров; мощность, потребляемая гребным винтом, доходит до 70 000 кВт. Гребные винты располагаются обычно в корме и только у некоторых специальных типов судов (ледоколов и паромов челночного типа) - в носу. судовой движитель кавитация винт

Гребной винт представляет собой конструкцию в виде ступицы с размещенными на ней лопастями, которые расположены радиально на равных угловых расстояниях друг от друга. Различают винты фиксированного шага (ВФШ) и винты регулируемого шага (ВРШ). ВФШ

(рис.100,а) изготавливаются цельнолитыми и со съемными лопастями. ВРШ (рис.100,б) внутри полой ступицы имеют механизм, изменяющий разворот лопастей. Благодаря ряду преимуществ, винты регулируемого шага нашли самое широкое применение на промысловых судах различных назначений. Для повышения эффективности работы гребных винтов используют специальные направляющие устройства (рис.101).

Рис.101. Гребной винт в направляющей насадке

Рис.102. Крыльчатый движитель: 1- привод; 2- передаточный механизм; 3 - корпус; 4- лопасти; 5 - ротор.

Крыльчатый движитель (рис.102) представляет собой диск, установленный заподлицо с плоской частью подзора кормы. В воде находятся только рабочие детали движителя - крылообразные вертикальные лопасти, число которых составляет 48. Если к хордам профилей крыльев провести нормали, то они все пересекутся в единой точке N, расположенной эксцентрично относительно центра диска и называемой центром управления. При вращении диска лопасти устанавливаются в определенное положение относительно потока, совершая по отношению к диску колебательные движения вокруг вертикальной оси. Закон этого колебательного движения выбирается таким, чтобы каждая лопасть за время полного оборота диска создавала силу, направленную всегда в сторону движения судна. Оси всех лопастей совершают движение по циклоиде, и каждая лопасть обтекается циклоидальным (криволинейным) потоком. Это достигается перемещением центра управления лопастями N вдоль диаметра движи теля. Меняя положение точки N, можно создавать силы различной величины.

Перемещением центра управления в стороны от основного диаметра при неизменном направлении вращения можно получить любые направления силы упора движителя. Таким образом, без реверсирования движителя можно изменить направление движения судна на обратное, а также объединить в одном устройстве функции движителя и рулевого органа. Изменение положения центра управления N относительно центра диска О обычно осуществляется дистанционно с мостика.

Рис.103. Схема сил при движении судна с крыльчатым движителем: а - передний ход; б - поворот налево; в - поворот направо; г - движение лагом при двух крыльчатых движителях; N - центр управления; О - центр движителя

На рис. 103 приведены схемы сил, развиваемых на крыльчатом движители при изменении эксцентриситета и обеспечивающих движение судна прямо и повороты налево и направо (рис. 103,а - в).

При установке на судно двух крыльчатых движителей оно получает возможность двигаться лагом (рис.103,г). Благодаря этому свойству крыльчатые движители устанавливают на портовых буксирах, паромах, плавучих кранах и других судах, для которых характерны высокие маневренные качества. Недостатком крыльчатого движителя является сложность его конструкции при невысоком пропульсивном коэффициенте.

Водометный движитель представляют собой установку, которая расположена внутри корпуса судна, состоящую из водопроточной трубы (канала) и мощного насоса. Насос засасывает воду через приемное отверстие в днищевой части корпуса и выбрасывает ее с повышенной скоростью через напорный канал. Реакция выбрасываемой струи и является той силой, которая движет судно в сторону, противоположную направлению выброса струи. Напорный канал водомета, расположенный в кормовой оконечности судна, обычно снабжается на конце поворотными насадками, реверсивными рулями или иными устройствами для управления судном путем изменения направления струи воды.

В качестве рабочего органа водометной установки вместо насоса может использоваться размещенный в канале водомета гребной винт с направляющим аппаратом (контрпропеллером). Такой водометный движитель может быть как одноступенчатым, так и многоступенчатым, т.е. состоять из одного или нескольких гребных винтов специальной конструкции с направляющими устройствами между ними. На рис. 104 показана схема двухступенчатого водомета.

Рис.104. Схема двухступенчатого водометного движителя: 1,2 - первая и вторая ступени (а - винт; б - контрпропеллер); 3 - сопло, обеспечивающее поджатие струи; 4 - водозаборник; 5 - водометная труба

Положительными качествами водометных движителей являются: способность эффективно работать при малых осадках судна; хорошая защищенность от повреждений при движении судна по засоренному фарватеру; лучшие кавитационные и эрозионные качества, меньшие вибрация и шумность по сравнению с обычным гребным винтом; возможность использования без дополнительных передач мощных высокооборотных двигателей.

К недостаткам водометных движителей по сравнению с гребными винтами относятся их более сложная конструкция и несколько меньший КПД.

2. Геометрические характеристики гребного винта

Рабочими органами винта являются лопасти, расположенные радиально на равных угловых расстояниях друг от друга и укрепленные на ступице, насаживаемой на конец гребного вала. Обычно число лопастей z = 36.

Различают винты правого и левого вращения. Винты правого вращения при повороте по часовой стрелке перемещаются в аксиальном направлении от наблюдателя, левого вращения - на наблюдателя. На двухвальных судах на валопроводе правого борта устанавливается винт правого вращения, на валопроводе левого борта - левого вращения. При вращении бортовых винтов в наружную сторону меньше вероятность попадания плавающих предметов между винтом и корпусом, и опасность подсасывания судна к стенке.

Рис.105.Элементы гребного винта

Поверхность лопасти винта, обращенная в корму и воспринимающая при переднем ходе судна повышенное давление, называется нагнетающей (рис.105). Поверхность лопасти, обращенная в нос и воспринимающая при переднем ходе судна пониженное давление, называется засасывающей . Линия пересечения нагнетающей и засасывающей поверхностей образует кромки лопасти. Кромка лопасти, обращенная в сторону вращения винта, - входящая , а противоположная - выходящая . Свободный конец лопасти называется краем , а примыкающий к ступице - корнем .

Диаметр окружности, описываемой краями лопастей, носит название диаметра D винта (радиус винта R = D/2). Площадь круга А d = рD 2 /4 принято называть площадью диска винта . Диаметр ступицы d 0 (радиус ступицы r 0), у цельнолитых d 0 = (0,160,18) D, у винтов со съемными лопастями d 0 0,25 D, винты регулируемого шага имеют d 0 0,32 D.

Нагнетающая и засасывающая поверхности лопасти представляют собой части винтовых поверхностей. Винтовая поверхность образуется при одновременном поступательном перемещении какого-либо отрезка (образующей) вдоль некоторой оси и вращении его вокруг той же оси (рис.106). Винтовая поверхность имеет двоякую кривизну, и поэтому ее изображают на плоскости системой развернутых винтовых линий для различных значений радиуса. Каждая винтовая линия является траекторией соответствующей точки образующей. Осевое перемещение этой точки за один оборот образующей называется шагом винтовой линии Н i .

Рис. 106. Образование винтовой поверхности постоянного шага

Если поступательное и вращательное перемещения образующей равномерны, получается правильная винтовая поверхность постоянного шага (рис.106); для нее на любом радиусе Н i = 2р r i tgц = const, где ц - шаговый угол . Если движение образующей остается равномерным, но шаг винтовых линий на разных радиусах r i имеет различные значения Н i , образуется винтовая поверхность радиально-переменного шага (рис 107,а). Шаг такой поверхности в целом принято характеризовать значением Н на радиусе на 0,7R.

Рис.107. Винтовые поверхности переменного шага: а - радиально-переменного шага; б - осе-переменного шага; в - осе-радиально- переменного шага

При неравномерном перемещении образующей винтовая поверхность будет осе-переменного шага (рис.107,б). Если шаг винтовых линий изменяется как вдоль оси, так и по радиусу, получается винтовая поверхность осе-радиально-переменного шага (рис.107,в).

Шаг правильной винтовой линии, проходящей через кромки лопасти на данном радиусе, называется геометрическим шагом лопасти (винта) Н на этом радиусе. Иначе он называется кромочным или конструктивным шагом. Отношение Н/D называется конструктивным шаговым отношением винта ; оно изменяется в пределах 0,61,8.

Профили сечений лопастей винтов бывают, как правило, двух видов - сегментные и авиационные (рис.108). У сегментных профилей наибольшая толщина приходится на середину хорды профиля, у авиационных она смещена к передней кромке в район трети хорды профиля. Сегментные и авиационные профили могут быть плосковыпуклыми, двояковыпуклыми и выпукло-вогнутыми. Форма спрямленной поверхности (форма контура лопасти) может быть симметричной или саблевидной (рис.109). Суммарная площадь спрямленных поверхностей обозначается F с. Отношение площади спрямленной поверхности всех лопастей к площади диска винта называется дисковым отношением гребного винта , т.е. И = F с / А d = F с / (рD 2 /4) (у винтов промысловых судов И = 0,300,70).

Материалом для гребных винтов служат специальные марки бронзы и латуни. Для изготовления гребных винтов судов высокого ледового класса, а также быстроходных судов используются также высокопрочные, коррозионно-устойчивые нержавеющие стали.

Рис.108.Профили сечений лопастей Рис.109. Формы контура лопастей винтов а - сегментные; а - симметричная; б - авиационные б - саблевидная

3. Кинематические характеристики гребного винта

При изучении работы винта каждая лопасть рассматривается как совокупность отдельных элементов, обтекаемых независимо друг от друга плоским потоком (движение предполагается обращенным, т.е. элемент лопасти считается неподвижным, а поток воды - набегающим на него). Картина обтекания спрямленного элемента лопасти, заключенного между двумя соосными цилиндрическими поверхностями радиусов r и dr, приведена на рис.110. Поток набегает на рассматриваемый элемент лопасти с осевой скоростью х p и окружной скоростью щr = 2рnr, где щ = 2рn - угловая скорость вращения, а n - частота вращения винта . Работающий винт, как и всякий реактивный движитель, сообщает воде дополнительные (вызванные) скорости: он подсасывает воду к себе, а затем отбрасывает ее назад, создавая вызванную осевую скорость х а, и закручивает в направлении вращения, создавая вызванную окружную скорость х t . Вызванная скорость х а увеличивает осевую скорость, а вызванная скорость v t уменьшает окружную скорость элемента лопасти относительно воды. В плоскости диска винта вызванные скорости составляют х а1 = х а /2 и х t 1 = х t /2. Результирующая скорость потока, набегающего на элемент лопасти:

Рис.110. Многоугольник скоростей Рис.1 Треугольник пути и сил для сечения пройденного гребным винтом элемента лопасти за один оборот

Окружные скорости для элементов лопасти, расположенные на разных радиусах, различны. Различна и результирующая скорость х - она увеличивается от корневого сечения к краю лопасти.

Угол между направлением скорости х и направлением нулевой подъемной силы (ННПС) называется углом атаки для элемента лопасти .

Если предположить, что винт движется в воде, как в гайке, т.е. без проскальзывания, то за один оборот он переместится в направлении оси вращения на величину геометрического шага Н. Фактически винт за один оборот перемещается в воде в осевом направлении на расстояние h р, называемой поступью винта, причем h р < H. При частоте вращения n винта его осевые (поступательные) скорости в твердой гайке и в жидкой среде соответственно равны Hn и х p = h р n.

Отношение поступи винта к его диаметру называют относительной поступью винта :

л р = h р /D = х p /nD.

Относительная поступь является универсальной кинематической характеристикой режима работы винта, поскольку изменение л р обусловливает изменение угла атаки набегающего на элемент лопасти потока как за счет изменения осевой скорости х p , так и окружной скорости 2рrn.

Разность H - h р = S называется линейным скольжением винта . Из рис.111 видно, что линейное скольжение, как и поступь h р, определяет угол атаки, а значит, и режим работы винта.

Важной кинематической характеристикой винта является относительное скольжение

s = S/H = (H - h р)/ H = 1- h р / H = 1- х p /nH.

Между относительной поступью и относительным скольжением существует связь, которая определяется зависимостями

s = 1- ; л р =(1- s).

Из зависимостей следует, что при s = 0: л р =,

а при х p = 0: л р = 0; s = 1.

4. Гидродинамические характеристики гребного винта

На выделенный элемент лопасти, который обтекается со скоростью х под углом атаки (см. рис.38), действуют гидродинамические силы. Результирующую этих сил обозначим через dF. Проекция dF на осевое направление есть сила упора элемента лопасти dР, а проекция на окружное направление - сила сопротивления вращению элемента лопасти dQ. Момент сопротивления вращению элемента лопасти: dМ = dQr, где r - радиус, на котором расположен рассматриваемый элемент лопасти.

Для всего винта сила упора :

где z - число лопастей; r 0 - радиус ступицы; R - радиус винта.

Момент сопротивления вращению винта:

Этот момент равен по величине и противоположен по знаку вращающему моменту, который необходимо приложить к винту для обеспечения его вращения с заданной частотой n и создания требуемого упора Р.

Валовая мощность, потребная для равномерного вращения винта с угловой скоростью щ = 2рn,

N р = М щ = 2рnМ.

Так как сила упора создается в результате обтекания лопастей потоком жидкости, то в соответствии с общей формулой для гидродинамических сил можно считать, что величина сила Р пропорциональна плотности жидкости, характерной площади винта и квадрату характерной скорости. Для винта в качестве характерной площади принимают D 2 , а в качестве характерной скорости - nD. Тогда, обозначив через 1 коэффициент упора , для силы упора получим следующую зависимость:

Р = сn 2 D 4 ,

откуда безразмерный коэффициент упора

Р /сn 2 D 4 .

По аналогии момент

М = сn 2 D 5 ,

безразмерный коэффициент момента

М /сn 2 D 5 .

Коэффициент полезного действия гребного винта з р, работающего в свободной воде (при отсутствии влияния корпуса судна и поверхности воды (з к = 1)), определяется отношением полезной мощности к затраченной мощности:

з р = Р х p /2рnМ,

или с учетом формул для упора и момента:

Упор, момент и к.п.д. являются гидродинамическими характеристиками гребного винта. Величины их зависят от относительной поступи винта л р = х p /nD, которая характеризует режим работы гребного винта. График, выражающий функциональную зависимость гидродинамических характеристик винта, и з р от относительной л р, называется кривыми действия винта (рис.112).

При отсутствии влияния корпуса, свободной поверхности воды и кавитации винта кривые действия будут одинаковыми для геометрически подобных винтов, так как л р является при этих условиях критерием динамического подобия винтов.

Рис.112. Кривые действия гребного винта в свободной воде

5. Работа гребного винта на разных режимах

Для оценки условий работы двигателей судна надо знать основные характеристики винта: упор Р, момент М и к.п.д. з р на разных режимах, т.е. при любых значениях поступательной скорости х p и частоте вращения n (при разных значениях л р = х p /nD). Рассмотрим некоторые характерные режимы работы винта, условно заменив его одним эквивалентным элементом лопасти, расположенным на радиусе центра тяжести площади спрямленной поверхности лопасти (при r = 0,7R).

Швартовный режим (рис.113,а). Этот режим работы винта наблюдается при снятии судна с мели, движении в ледяных торосах. В швартовном режиме х p = 0 и л р = х p /nD = 0, т.е. винт работает на месте не совершая полезной работы, КПД его з р = Р х p /2рnМ = 0. Так как угол атаки для элемента лопасти достигает наибольшей величины, упор винта Р и момент М (коэффициенты и) оказываются наибольшими (рис.112). В этом режиме работа винта с полной частотой вращения недопустима из-за перегрузки двигателей и опасности повреждения валопроводов по причине больших осевых усилий и крутящих моментов. Максимальная частота вращения винта на швартовном режиме составляет 60 0,65% частоты вращения расчетного режима полного хода, т.е. n шв < (0,600,65) n п.

Рис.113. Режимы работы элемента лопасти

Основной (расчетный) режим переднего хода (рис.113,б). Этот режим соответствует относительной поступи л р >0, при которой винт создает полезный упор Р (>0) за счет подведенного от двигателя вращающего момента М (>0), причем КПД з р находится в области максимальных для данного винта значений (рис.112). Угол атаки элемента лопасти, коэффициенты и в рассматриваемом режиме меньше, чем в швартовом режиме.

Режим нулевого упора (рис.113,в). С дальнейшим увеличением относительной поступи угол атаки для элемента лопасти продолжает уменьшаться, в в связи с чем снижаются значения упора и момента винта. При некотором л р = л р1 упор Р (коэффициент упора) обращается в нуль и з р = Р х p /2рnМ = 0, т.е. винт не совершает полезной работы (рис.112). Момент М (коэффициент момента) остается положительным, т.е. винт требует подведения от двигателя некоторого вращающего момента, который целиком расходуется на преодоление сопротивления вращению винта. Относительную поступь л р1 принято обозначать называют Н 1 /D и называть шаговым отношением нулевого упора или гидродинамическим шаговым отношением, а величину Н 1 - шагом нулевого упора или гидродинамическим шагом. Шаговое отношение нулевого упора Н 1 /D превышает конструктивное Н/D, и их численное соотношение специфично для каждой серии гребных винтов. Режим нулевого упора наблюдается при реверсе винта и является кратковременным.

Режим нулевого момента (рис.113,г). При увеличении относительной поступи за режимом нулевого упора при л р = л р2 наступает режим нулевого момента винта, когда коэффициент момента становится равным нулю. Понятие КПД винта з р здесь не имеет смысла, так как к винту от двигателя вращающий момент не подводится. Винт вращается под действием набегающего на него потока, а возникающий при этом момент целиком расходуется на преодоление сопротивления вращению винта. Работающий винт оказывает набегающему потоку сопротивление, которое соответствует отрицательному значению упора Р (коэффициент упора). Таким образом, в пределах относительной поступи от л р = л р1 до л р = л р2 гребной винт уже не является движителем, он как бы “парализован” или находится в так называемой зоне Параля (рис.112).

Дальнейшее увеличение относительной поступи за предел л р2 приводит к тому, что не только упор Р, но и момент М оказываются отрицательными, т.е. гребной винт из движителя превращается гидротурбину (рис.113,д), что соответствует турбинному режиму работы винта.

6. Диаграммы для расчета гребных винтов

Диаграммы для расчета гребных винтов позволяют решать многие эксплуатационные задачи, в том числе задачи, необходимые судоводителю. В частности, с помощью этих диаграмм определяют достижимую скорость судна, упор гребного винта, стоят паспортные диаграммы.

Диаграммы для расчета гребных винтов являются результатом испытаний моделей гребных винтов в опытовых бассейнах или специальных лабораториях - в кавитационных трубах. Эти испытания позволяют установить взаимосвязь всех геометрических характеристик (Н/D; d 0 /D; z; И и др.) и их влияние на эффективность работы гребных винтов.

Рис.114. Диаграммы Э.Э.Пампеля для расчета гребных винтов серии В.4.40 (z = 4, И = 0,40)

Широко распространены диаграммы в форме предложенной Э.Э. Пампелем. Для каждой серии винтов с одинаковым числом z лопастей и дисковым отношением И, представлены две расчетные диаграммы (рис.114): на верхней дана зависимость от л р при различных значениях Н/D, на нижней - (л р) при тех же значениях Н/D.

На диаграммах также нанесены кривые равных значений з р, которые получают, проведя плавные кривые через точки с постоянными значениями КПД, отмеченные предварительно на кривых и, относящихся к различным шаговым отношениям.

Диаграмму (л р) используют для расчетов элементов винта и скорости судна при заданной мощности двигателя; если задана скорость судна, то для определения двигателя используют диаграмму (л р). По обеим диаграммам легко определить оптимальные диаметр винта или частоту его вращения, скорость судна или упор винта, его шаговое отношение, потребляемую мощность двигателя и т.д. Если диаметр или частота вращения не известны, то такую задачу решают с использованием расчетных коэффициентов:

Упора - диаметра

Мощности - диаметра

" d = 0,274х p D;

Упора - частоты вращения

Мощности - частоты вращения

7. Взаимодействие гребного винта и корпуса судна. Пропульсивный коэффициент

Винт и корпус судна находятся в сложном гидродинамическом взаимодействии. Сущность его заключается в следующем:

На винт, работающий за корпусом, набегает поток воды, возмущенный движением корпуса, в результате чего гидродинамические характеристики винта изменяются по сравнению с их значениями в свободной воде;

Работающий винт изменяет величины давлений и касательных напряжений на поверхности кормовой оконечности корпуса, в результате чего изменяется сопротивление воды движению судна.

Следовательно, гидродинамические характеристики одного и того же гребного винта, работающего в свободной воде и за корпусом судна, будут различны, а сопротивление воды движению судна в присутствии работающего гребного винта будет отличаться от его буксировочного сопротивления.

Попутный поток. При движении судна часть окружающей его воды увлекается в направлении движения, образуя попутный поток (рис.115). Попутный поток за корпусом судна имеет в разных точках различное значение и направление, т.е. гребной винт работает в неравномерном поле скоростей, которое характеризуется осевыми, окружными и радиальными составляющими скорости попутного потока. При определении характеристик винта, как правило, учитывают только осевой попутный поток.

Из- за наличия попутного потока осевая скорость винта х p оказывается ниже скорости судна:

v щ = v - х p ,

где v щ - осевая составляющая скорости попутного потока.

Отношение скорости попутного потока к скорости судна

v щ / v = (v - х p)/v = 1- х p /v = щ

называют коэффициентом попутного потока .

С учетом коэффициента попутного потока, нетрудно получить следующее выражение для осевой скорости винта:

х p = (1 - щ)v.

В результате неравномерности потока по диску винта коэффициенты упора и момента винта за корпусом судна будут иными, чем в свободной воде. Указанное влияние учитывается:

Коэффициентом влияния неравномерности поля скоростей на упор

Коэффициентом влияния неравномерности поля скоростей на момент

Коэффициентом влияния неравномерности поля скоростей на КПД винта

i = = i 1 /i 2 .

В практических расчетах принимают i =1, основываясь на том, что коэффициенты неравномерности потока i 1 и i 2 изменяются в пределах 0,96 1,02.

Рис.115. Попутный поток за корпусом судна при отсутствии давления

Рис.116. Формирование силы засасывания на корпусе судна: А - эпюра давления гребного винта; В- зона при работающем винте

Засасывание. Работая за корпусом судна, гребной винт подсасывает воду и увеличивает скорость обтекания кормовой оконечности судна. При этом в соответствии с законом Бернулли понижается давление во всей зоне, охваченной подсасывающим действием винта, что увеличивает сопротивление формы (рис. 116). Кроме того, повышение скорости обтекания кормовой оконечности приводит к возрастанию сопротивления трения. Заштрихованная на рис. 116 область соответствует уменьшению давления в корме от работы гребного винта. В результате этих явлений появляется дополнительная сила ДR, действующая на корпус и увеличивающая сопротивление воды движению судна. Эту силу принято называть силой засасывания . С учетом силы засасывания сопротивление движению судна

где R - буксировочное сопротивление судна без гребного винта

Таким образом, часть упора гребного винта, именуемой полезной тягой Р е, затрачивается на преодоление буксировочного сопротивления R, а остальная часть упора идет на преодоление силы засасывания, т.е.

Р = Р е + ДР.

Влияние засасывания принято учитывать с помощью коэффициента засасывания .

t = ДР / Р = Р - Р е = 1 - Р е / Р.

С учетом коэффициента засасывания, упор винта Р

Р = Р е /1 - t .

Значения коэффициентов взаимодействия. Коэффициенты щ и t весьма сложным образом зависят от формы корпуса судна, формы и расположения выступающих частей, от числа винтов, их геометрических характеристик и расположения по отношению к корпусу, от режима работы винтов, степени неравномерности поля скоростей в месте расположения винтов и других факторов.

Коэффициенты взаимодействия определяют экспериментальным путем или по приближенным формулам.

Для режимов работы винта, отличающихся от расчетного, коэффициент засасывания может быть определен по приближенной формуле Э.Э. Пампеля

где л р - относительная поступь винта на рассматриваемом режиме; H/D - конструктивное шаговое отношение, t 0 - коэффициент засасывания на швартовом режиме (при л р = 0), который принимается равным (0,30,6)щ или подсчитывается, если известны t и л р для расчетного режима, по формуле t 0 = t ; щ - коэффициент попутного потока для расчетного ходового режима.

Коэффициенты щ и t для расчетного ходового режима приближенно могут быть вычислены по формулам:

Для одновинтовых судов с обтекаемыми рулями

щ = 0,50д - 0, 05; t = 0,80 щ,

Для двухвинтовых судов

щ = 0,55д - 0,2; t = 0,25щ + 0,14 (с выкружками гребных валов),

t = 0,7щ + 0,06 (с кронштейнами гребных валов),

где д - коэффициент общей полноты корпуса судна.

Пропульсивный коэффициент. Совершенство гидродинамического комплекса винт-корпус оценивается пропульсивным коэффициентом движителя з д, который представляет собой отношение буксировочной мощности к валовой мощности затрачиваемой на вращение винта (§10.1.):

з д = N б / N р = Rv/2рnM.

С учетом, что Р = Р е /1 - t и х p = (1 - щ)v, получим

з д = ? (1 - t)/(1 - щ) = з р з к,

где з р = Р х p /2рnМ - КПД гребного винта, работающего в свободной воде (§4.), а коэффициент з к = (1 - t)/(1 - щ) - коэффициент влияния корпуса (§10.1.).

8. Кавитация гребных винтов

Природа кавитации . Кавитацией называется явление разрыва сплошности течения капельной жидкости при понижении местного давления до некоторого критического значения р кр. Область разрыва (кавитационная каверна ) представляет собой объем, заполненный парами жидкости и растворенными в ней газами. Давление внутри каверны близко к давлению насыщенных паров р d при данной температуре. Отсюда кавитацию гребного винта обычно рассматривают как явление вскипания воды в потоке, вызванном винтом, при снижении местных давлений до давления насыщенных паров, полагая р кр р d .

Природу кавитации можно проследить на примере элемента лопасти обтекаемого под углом атаки потоком жидкости, имеющим на бесконечности в точке А скорость х 0 и давление р 0 (рис.117). Выделим на одной линии тока с точкой А точку В у поверхности элемента лопасти. Скорость и давление в точке В обозначим соответственно через х 1 и р 1 . Тогда уравнение Бернулли для линии тока запишется так:

р 0 + сх 0 /2 = р 1 + сх 1 /2,

др = р 1 - р 0 = .

Из формулы видно, что в тех точках поверхности элемента, где х 1 >х 0 , давление понижается др<0; в местах, где х 1 <х 0 давление повышается др>0. В результате на нагнетающей стороне лопасти вращающегося винта создается зона повышенного давления, на засасывающей стороне - зона пониженного давления.

Характерное распределений давлений на засасывающей и нагнетающей поверхности лопасти работающего гребного винта показано на рис.117. Как следует из рисунка, площадь эпюры давлений, а следовательно, и величина упора, развиваемого гребным винтом, на 7080% определяется разряжением на засасывающей поверхности и только на 2030% - повышением давления на нагнетающей поверхности лопасти.

Рис.117. Схема обтекания элемента крыла

При определенной частоте вращения гребного винта скорость обтекания лопасти достигает значения в 35 раз превышающего поступательную скорость судна. При этом давление на засасывающей поверхности понижается до давления насыщенных паров. В результате холодного кипения воды из нее выделяются растворенные газы. Пары и газы оттесняют воду от поверхности лопасти и образуют на ее засасывающей стороне кавитационную каверну.

Стадии кавитации и влияние кавитации на работу гребного винта. Различают две стадии кавитации. Первая характерна тем, что каверна захватывает только часть засасывающей поверхности лопасти, где скорость частиц наибольшая. На этой стадии гидродинамические характеристики гребного винта изменяются незначительно по сравнению с их значениями при безкавитационном обтекании. Объясняется это тем, что площади эпюр давлений при безкавитационной работе винта и в условиях первой стадии кавитации практически равны. Однако первая стадия кавитации нежелательна, так как является причиной механического разрушения материала лопасти - эрозии . Пары воды, переходя из области каверны в область более высоких давлений, конденсируются. Процесс конденсации пара и смыкания (разрушения) кавитационных пузырьков происходит с большой скоростью. В момент конденсации пузырьков пара вода мгновенно заполняет образующую пустоту, нанося по лопасти гидродинамические удары, причем местные давления достигают больших значений. В результате, в местах замыкания каверны, поверхность лопасти разрушается.

На второй стадии кавитационная каверна захватывает всю засасывающую сторону лопасти и замыкается в потоке за гребным винтом. На этой стадии кавитации эрозии не происходит, так как пары конденсируются за пределами лопасти. Однако гидродинамические качества винта по сравнению с безкавитационным обтеканием заметно ухудшаются. Увеличение частоты вращения винта уже не приводит к уменьшению давления на засасывающей поверхности лопасти, где р р d , отчего упор винта практически не растет. Кроме того, потоком обтекается профиль более низкого гидродинамического качества (за счет каверны). Это вызывает увеличение вращающего момента, приложенного к винту, и уменьшение КПД движителя. Представление об ухудшении гидродинамических качеств винта, можно составить по кривым действия винта, отвечающим безкавитационному обтеканию и кавитации различной степени развития (рис.118). Сплошными линиями нанесены зависимости коэффициентов упора, момента, и КПД з р винта от относительной поступи л р при безкавитационнном обтекании и в первой стадии кавитации. Пунктирные линии представляют те же зависимости при наступлении второй стадии кавитации. Видно, что ухудшение гидродинамических характеристик наблюдается с уменьшением л р (например, с увеличением частоты вращения винта n при х p = const), что обусловлено увеличением углом атаки на лопастях. Величины, и з р во второй стадии кавитации зависят не только от л р, но и от параметра ч, называемого числом кавитации . Последнее характеризует величину предельного разряжения на лопасти, (в долях скоростного напора), которое может быть достигнуто в воде в заданных условиях:

где р а - атмосферное давление; h с - глубина погружения винта (рис.117).

Рис.118.Кривые действия кавитирующего винта

Число кавитации определяется только внешними факторами (р а, h с плотностью и температурой воды от которой зависит р d), поступательной скоростью х p и не зависит от геометрических элементов гребного винта.

Критическое число кавитации ч кр соответствует возможному наибольшему разрежению на лопастях при докавитационных режимах их обтекания. Начало кавитации гребного винта определяется условием ч = ч кр. При ч > ч кр кавитация отсутствует, при ч < ч кр винт кавитирует, причем тем больше, чем меньше число ч по сравнению ч кр (рис.118).

В какой бы стадии не протекала кавитация, она всегда приводит к нежелательным последствиям: усиливает шум работающего винта, вызывает эрозию лопастей, снижает гидродинамические характеристики гребного винта, увеличивает неравномерность загрузки лопастей, что является одной из причин вибрации гребного вала и, как следствие, корпуса судна. Поэтому при проектировании винтов стремятся обеспечить их безкавитационную работу. С этой целью применяют профили с более равномерным распределением давлений по лопасти, увеличивают дисковое отношение, уменьшают относительную толщину лопасти, повышают давление на засасывающей стороне лопасти за счет погружения оси винта и т.п.

Для быстроходных судов (глиссирующие катера, катера на подводных крыльях и т.п.) во многих случаях не удается избежать кавитации гребных винтов, поэтому они оборудуются суперкавитирующими винтами (СКВ). Под суперкавитацией понимают сильно развитую вторую стадию кавитации, когда обтекание лопастей винта происходит со срывом струй и каверна уходит за пределы лопастей. Исходя из того, что при суперкавитации основная часть упора создается за счет давления на нагнетающей поверхности лопасти и форма засасывающей поверхности не играет существенной роли, СКВ имеют клиновидный профиль сечения лопасти и искривленную нагнетающую поверхность (рис.119). Такая форма лопасти, с одной стороны, способствует образованию каверны оптимальных размеров, с другой - обладает наименьшим сопротивлением вращению гребного винта. В условиях суперкавитации такие винты обладают более высокими гидродинамическими качествами по сравнению с некавитирующими гребными винтами.

Рис.119.Профили сечений лопастей суперкавитирующих винтов

Конструктивной особенностью СКВ является также острая входящая кромка лопасти и смещение наибольшей толщины профиля к выходящей кромке. Клиновидные профили такой формы позволяют уменьшить толщину каверн, образующихся в междулопастном пространстве, снизить их взаимное влияние и тем самым повысить гидродинамические характеристики винта. СКВ имеют сравнительно небольшое дисковое отношение И = 0,400,55, узкие лопасти, их число z = 23, что уменьшает возможность взаимного влияния каверн каждой лопастей.

Положительные качества СКВ проявляются при работе их на расчетном режиме в условиях полностью развитой кавитации. Для режимов, отличных от расчетных, когда кавитация отсутствует или развита частично, происходит повышенное вихреобразование позади тупой выходящей кромки лопасти СКВ, вследствие чего его КПД становится ниже, чем у обычных винтов. Начиная с ч = 0,4 и выше, СКВ уже уступают обычным гребным винтам.

9. Взаимосвязь между работой гребного винта и двигателем

Двигатель, работающий на винт, не является независимым: его мощность может изменяться только по винтовой характеристике N е (n), которая определяет для него величину противодействующего момента. Мощность на валу двигателя N е, обеспечивающую мощность N р потребляемую винтом:

N е = N р / з в з п = 2рсn 3 D 5 / з в з п,

где з в, з п - КПД валопровода и передачи.

При заданных буксировочном сопротивлении и пропульсивном коэффициенте скорость судна v зависит от частоты вращения винта n. Можно считать, что v меняется пропорционально n, т.е. относительная поступь л р = const. Так как в этом случае также является постоянной величиной, можно записать, что N е = Сn 3 , где С - постоянный коэффициент.

Из изложенного следует, что с изменением буксировочного сопротивления винтовая характеристика меняется. При увеличении сопротивления винтовые характеристики будут резко возрастать, так как уменьшение относительной поступи винта л р приведет к росту коэффициента момента и, следовательно, коэффициента С. Наиболее крутую винтовую характеристику судно будет иметь на швартовом режиме. При снижении сопротивления винтовые характеристики вследствие увеличения л р и уменьшениястановятся более пологи ми. Наиболее пологую винтовую характеристику судно имеет при плавании в балласте. Как видим, в процессе эксплуатации судна его винтовые характеристики изменяются в широких пределах.

Рис.120. Взаимодействие гребного винта с двигателем внутреннего сгорания

Для оценки связи между винтом и двигателем, помимо винтовых характеристик, необходимо иметь характеристики двигателя, которые получают при стендовых испытаниях и представляют в координатах N е - n виде кривых, определяющих поле возможных сочетаний N е и n. Рассмотрим характеристики наиболее распространенного на промысловых судах двигателя внутреннего сгорания. Работа двигателя данного типа характеризуется следующими кривыми (рис.120): кривая 1 устанавливает минимально устойчивую частоту вращения двигателя; кривая 2, называемая верхней ограничительной характеристикой , определяет зависимость N е от n при постоянном положении аппаратуры подачи топлива, соответствующем получению номинальной мощности N е.н при номинальной частоте вращения n н; кривая 3, именуемая регуляторной характеристикой , показывает частоту вращения двигателя при снижении нагрузки; кривая 4 является характеристикой холостого хода . Верхняя ограничительная характеристика является линией постоянного номинального крутящего момента М кр.н, определяющей верхний предел длительной механической напряженности деталей двигателей.

Чтобы установить режимы совместной работы винта и двигателя, необходимо наложить винтовые характеристики на характеристики двигателя (рис.120). Если винтовая характеристика для расчетного режима плавания (кривая I) проходит через точку Н с координатами N е.н и n н, то гребной винт соответствует двигателю. С ростом сопротивления из-за увеличения осадки судна, обрастания корпуса, волнения и тому подобного изменяется винтовая характеристика (кривая II), поэтому при нормальной эксплуатации двигателя, не допускающей его загрузку выше верхней ограничительной характеристики, взаимосвязь между винтом и двигателем будет наблюдаться в точке Т. В рассматриваемом случае винт становится гидродинамически «тяжелым». При тяжелом винте частота вращения n т двигателя меньше номинальной. С уменьшением сопротивления судна винт оказывается гидродинамически «легким». Винтовая характеристика (кривая III), построенная для этого варианта, пересечет регуляторную характеристику двигателя в точке Л, которой соответствует частота вращения n л, равная или несколько больше номинальной. Как видно из рис.120, всякое несоответствие винта двигателю связано с уменьшением располагаемой мощности двигателя и приводит к снижению скорости судна. Согласованность винта и двигателя окончательно проверяется при натурных (скоростных) испытаниях судна. Практически следует считать, что винт согласован с двигателем, если двигатель при работе на винт развивает номинальную мощность при частоте вращения, которая отличается от номинальной не более чем на 13%. Для согласования винта с двигателем корректируется его шаговое отношение: для «легкого» винта - увеличивается, а для «тяжелого» - уменьшается Н/D. Обычно гребные винты проектируют несколько облегченными по сравнению с требуемыми для идеальных условий эксплуатации (при этом имеют в виду, что по мере обрастания корпуса и увеличения сопротивления в реальных эксплуатационных условиях винт становится «тяжелее» и более соответствует главному двигателю).

В связи с тем, что принятый шаг винта отвечает только определенному режиму эксплуатации судна, на судах, которые часто меняют режим хода (промысловые суда, буксиры, паромы), вместо винтов фиксированного шага (ВФШ) применяют винты регулируемого шага (ВРШ).

10. Винты регулируемого шага

Для промысловых судов в эксплуатационных условиях характерны частые изменения буксировочного сопротивления, скорости и осадки при применении орудий лова, подъеме улова на борт, приеме и расходовании топлива и воды и других операциях. В этих изменяющихся условиях плавания ВФШ не позволяют снимать с двигателя полную мощность, что приводит к снижению скорости траления и свободного хода. Кроме того, на добывающих судах с ВФШ за одни сутки промысловой работы приходится десятки раз реверсировать двигатель, в результате чего резко снижается срок его службы. При дрифтерном и ярусном лове, подъеме улова и т.п. судно должно двигаться с малой скоростью, однако на судах с ВРШ это практически невозможно, так как минимально устойчивая частота вращения двигателя довольна велика. Поэтому приходится с интервалом в несколько минут запускать и останавливать двигатель. Такая работа двигателя вызывает ускоренный износ ее движущихся частей, т.е. уменьшает моторесурс двигателя.

Рис.121. Принципиальная схема ВРШ 1- лопасть; 2 - ступица; 3 - ползун; 4 - штанга; 5 - гребной вал; 6 - поршень; 7 - цилиндр

Винты регулируемого шага (ВРШ), лопасти которых специальным механизмом поворачиваются относительно осей, перпендикулярных оси вала, не имеют большинства недостатков, присущих ВФШ. Путем разворота лопасти (изменив шаговое отношение), всегда можно привести винт в соответствие с двигателем; без изменения направления вращения двигателя осуществить реверс судна и получить самые малые, и даже нулевую скорости судна при любой частоте вращения винта.

ВРШ (рис.121) состоит из ступицы, поворотных лопастей, механизма поворота лопастей, расположенного в ступице, механизма изменения шага (МИШ) и привода механизма поворота лопастей, располагаемого в валопроводе. Управление ВРШ осуществляется с местного поста и дистанционно. Пост дистанционного управления ВРШ устанавливается в ходовой рубке.

Механизм поворота лопастей управляется механизмом изменения шага. Наиболее распространенные механизмы поворота лопастей показаны на рис.122. На морских судах применяются обычно механизмы двух последних типов, как наиболее надежные. В механизме кулисного типа (рис.122, в) с поступательно движущейся штангой МИШ связан ползун, по направляющим которого перемещается сухарь. В сухарь вставлен эксцентрично закрепленный на лопасти палец. При поступательном движении штанги ползун передвигает палец и разворачивает лопасть. В механизме шатунного типа (рис.122, г) движение штанги передается шатуну, который поворачивает лопасть.

Рис.122. Механизм поворота лопастей: а - шестеренчатый; б - винтовой; в - кулисный; г - шатунный

Механизмы изменения шага по типу привода могут ручными, механическими, гидравлическими, электромеханическими и электрогидравлическими. Ручные и механические приводы применяются на винтах небольших размеров. Большинство ВРШ имеют гидравлические приводы, так как они обладают простотой, высокой надежностью, малыми габаритами и развивают большие усилия. Механизм изменения шага винта размещают внутри ступицы, внутри валопровода и вне валопровода и винта. На промысловых судах МИШ устанавливается, как правило, в валопроводе, реже в ступице. На рис.49 приведена схема ВРШ с МИШ, расположенным в валопроводе. Штанга, поворачивающая лопасть, проходит через полый гребной вал. Кормовой конец штанги связан с ползуном, носовой - с поршнем, который под давлением рабочей жидкости, подаваемой в одну из полостей цилиндра, передает через штангу поступательное движение ползуну. При большой длине штанги и значительных деформациях валопровода может возникнуть опасность несрабатывания механизма поворота лопастей и аварии МИШ. Этот недостаток устраняют, размещая МИШ в ступице несколько больших размеров или в кормовом подзоре судна.

ВРШ обладают следующими преимуществами по сравнению с ВФШ:

Обеспечивают полную мощность двигателя при широком диапазоне изменения скоростей, что важно при движении судна во льдах, при различных водоизмещениях, при тралении, при буксировке других судов и т.п.;

Обеспечивают любое значение скорости от наибольшего переднего до наибольшего заднего хода, без реверсирования двигателя и изменения направления и частоты вращения гребного винта;

Реализуют экономический ход судна по заданной оптимальной программе, обеспечивающей наилучшую комбинацию шага и частоты вращения.

Помимо перечисленных, ВРШ позволяют получить и другие менее принципиальные, но важные преимущества по сравнению с ВФШ, облегчающие управление судном с мостика. К ним относятся:

Существенное сокращение времени и расстояния, проходимого судном при экстренной остановке (в 1,5 раза меньше выбег) и реверсе;

Обеспечение только дистанционного управления с мостика;

Применение повышенного уровня автоматизации управления системой судно - двигатель - ВРШ;

Повышение маневренных качеств судна, в частности облегчение швартовок, исключение рывков при буксировке и т.п.;

Облегчение пуска двигателей, который осуществляется при положении лопастей ВРШ в нулевом шаге; при этом уменьшается число пусков и увеличивается моторесурс двигателя;

Возможность судна, оборудованного ВРШ, продолжительное время стоять на месте в ожидании лоцмана, для ориентации в обстановке, не останавливая вращения гребных винтов и прогревая двигатели; это обеспечивает установкой шага лопастей в нулевое положение;

Подобные документы

    Площадь смоченной поверхности судна. Расчет сопротивления трения судна для трех осадок. Расчет сопротивления движению судна с помощью графиков серийных испытаний моделей судов. Определение параметров гребного винта. Профилировка лопасти гребного винта.

    курсовая работа , добавлен 19.01.2012

    Расчет сопротивления воды движению судна. Расчет контура лопасти гребного винта. Распределение толщин лопасти по ее длине. Профилирование лопасти винта. Построение проекций лопасти винта, параметры ступицы. Определение массы гребного винта судна.

    курсовая работа , добавлен 08.03.2015

    Основные технические характеристики и мореходные качества рефрижераторного судна "Охотское море". Состав и особенности судовой энергетической установки. Расчет и кинематические характеристики гребного винта. Приемка и учет расхода масла и топлива.

    курсовая работа , добавлен 28.11.2011

    Выбор главного двигателя, передачи, количества гребных винтов. Определение мощности ГД. Расчёт потребностей судна в электроэнергии, паре и воде. Режимная карта пропульсивного комплекса. Анализ эффективности теплоиспользования в дизельной установке.

    курсовая работа , добавлен 05.03.2015

    Основные судовые документы. Исключения в отношении наличия судовых документов. Подлинность судовых документов. Документы, выдаваемые компетентными органами, подтверждающие определенные качества судна. Документы, отражающие жизнедеятельность судна.

    контрольная работа , добавлен 14.07.2008

    Описание технических характеристик и изучение документации по мореходным качествам рефрижераторного судна "Яна". Определение координат центра тяжести судна. Изучение состава и технических характеристик судовой энергетической установки и гребного винта.

    курсовая работа , добавлен 12.01.2012

    Проверка и анализ судовых систем судовождения во время их создания и в ходе эксплуатации. Средство предсказания поведения судна в различных условиях эксплуатации. Основа компьютерных тренажеров по управлению судном. Система управления судном без экипажа.

    статья , добавлен 10.01.2011

    Расчёт буксировочных сопротивления и мощности. Выбор главного судового движителя для создания полезной тяги. Расчёт и выбор гребного винта посредством определения его оптимальных параметров и использования высокого коэффициента полезного действия.

    курсовая работа , добавлен 26.01.2015

    Характеристика судовых вспомогательных механизмов и систем как важной части судовой энергетической установки. Классификация судовых насосов, их основные параметры. Судовые вентиляторы и компрессоры. Механизмы рулевых, якорных и швартовных устройств.

    контрольная работа , добавлен 03.07.2015

    Основные элементы корпуса судна и системы набора. Архитектурные элементы судов. Судовые помещения и трапы. Водонепроницаемые закрытия. Аварийный выход из машинного отделения. Системы дизельных судовых энергетических установок. Мореходные качества судов.

Механические двигатели на судах могут приводить в действие следующие движители

1 У нас в стране суда с таким парусным вооружением называют кэт га-фельный, бермудский и т. д. - прим. науч. ред.

2 Движитель - устройство, которое, используя работу двигателя, создает силу, способную перемещать судно в заданном направлении.

Гребные ВИНТЫ. Винты, размещаемые в кормовой части судна, постоянно находятся под водой. Гребные валы винтов параллельны конструктивной ватерлинии (КВЛ)Винты могут иметь от двух до пяти лопастей, неподвижных или поворотных (регулируемого шага) (рис. 56). Наконец, суда могут быть с одним, двумя, тремя или четырьмя винтами, расположенными симметрично относительно диаметральной плоскости.

Считается, что суда с гребными винтами и обычным корпусом не могут развить скорость более 40 уз, так как коэффициент полезного действия винтов невелик. Только с появлением новых типов судов, например с подводными крыльями или на воздушной подушке, удалось превысить эту скорость.

Гребные колеса - это специальные колеса с лопастями, расположенными по окружности; лопасти - плицы - могут быть неподвижными или поворотными (рис. 57). Гребные колеса, как правило два, устанавливают по бортам судна, однако встречаются суда и с одним гребным винтом, расположенным на корме (например, некоторые американские речные суда). В воде находится только нижняя часть гребных колес.

Крыльчатый движитель начал входить в употребление только в последние годы. Он был предложен в 1926 г. австрийцем Эрнестом Шнайдером и после пятилетних испытаний построен немецкой фирмой Войта. С 1939 г. его начинают применять в основном на буксирах, понтонах и речных судах.

Движитель представляет собой диск, горизонтально вращающийся внутри обшивки, с четырьмя выступающими лопастями, которые могут поворачиваться относительно своих вертикальных осей. Лопасти можно располагать и эксцентрично; изменяя эксцентриситет и углы установки лопастей, создают упор движителя в любом направлении (рис. 58). Поэтому такой движитель заменяет руль и одновременно обеспечивает судну большую маневренность: возможно движение вперед, назад, в сторону и дал<е поворот судна на месте.

Водометный движитель. Ведутся разработки новых движителей. Широкое применение, возможно, найдет водометный движитель, первые попытки использования которого относятся к прош-. лому веку. Эксперименты проводились в 1866 г. в Англии и в 1885 г. в России, но только в 1940 г. в Советском Союзе и в США они закончились успешно.

Принцип работы движителя состоит в том, что вода отбрасывается Б сторону, противоположную желаемому направлению движения судна. Для этого вода засасывается через отверстие в днище при помощи насоса и с большой скоростью через сопло выбрасывается наружу.При использовании этого движителя можно обходиться без руля, так как сопло поворачивается в любую сторону (рис. 59, 60).

" КВЛ - ватерлиния, соответствующая проектной осадке судна.


Рис. 62. Судно на воздушной подушке.

Воздушные винты, к водным транспортным средствам с механическим двигателем относят и глиссеры, приводимые в движение воздушным винтом. Эти суда, как правило, имеют плоское днище, их часто используют на мелководьях, в болотах, озерах, лагунах и т. д. (рис. 61).

По принципу поддержания суда классифицируют на:

водоизмещающие, у которых вес уравновешен силами воды, действующими на погруженную в воду часть судна, т. е. -силами гидростатического давления;

суда с динамическими принципами поддержания (глиссирующие, суда на воздушной подушке и на подводных крыльях, экра-нопланы).

Суда на воздушной подушке. Эти транспортные средства называть судами следует с оговоркой, так как они могут двигаться как по суше, так и по воде, но могут сыграть вполне определенную роль в развитии будущих мор- ских средств.

в Англии такие суда называют Hovercraft - парящими средствами передвижения, а в Америке - Ground Effect Maschine - машинами эффекта поверхности.

При движении такие суда опираются на воздушную подушку, давление которой уравновешивает вес транспортного средства и удерживает его парящим над землей или водой. Таким образом, судну приходится преодолевать только сопротивление воздуха, что позволяет достичь высоких скоростей.

Существуют различные способы создания воздушных подушек, в основе которых лежит один принцип: воздух специальными вентиляторами нагнетается под днище транспортного средства. Обычно применяют один или несколько воздушных винтов или пропускают часть воздушной струи от компрессоров через соответствующие сопла, благодаря чему судно движется. В настоящее время проводятся эксперименты по созданию других транспортных средств, работающих по принципу воздушной подушки (риє. 62).

Суда на подводных крыльях. В настоящее время этим судам предсказывают большое будущее. В них в определенном смысле сконцентрирован опыт и современные достижения техники.

Благодаря опытам Кроко и Форлакини первое такое судно было испытано на озере Комо в 1920 г.

Судно на подводных крыльях во время движения не испытывает гидродинамического давления, так как в воду погружены олько небольшие крылья особого профиля, а весь корпус полностью находится над водой.


Различают суда с наклонными крыльями, часть которых находится в воде, а часть над водой (рис. 63), и суда с постоянно погруженными подводными крыльями (рис. 64).

Движение этих судов происходит при помощи или обычных гребных винтов, или воздушных винтов, или водометного движителя. Высокие скорости судов на подводных крыльях свидетельствуют об их большой перспективности и о правильности выбранного конструкторами пути.

Приступая к изучению существующих движителей судов необходимо дать определение этому понятию. Судовой движитель - это устройство для преобразования работы энергетической установки судна в тягу, обеспечивающую его поступательное движение. Тяга движителя образуется за счет реактивных сил, возникающих при отбрасывании рабочей среды в сторону, обратную направлению поступательного движения судна. По характеру рабочей среды движители в настоящее время условно делятся на гидравлические (рабочая среда - вода), воздушные (воздух) и газоводометные (водовоздушная смесь). В свою очередь гидравлические движители подразделяются на лопастные (весло, гребной винт, плицы гребного колеса и т.п.) и нелопастные (газоводометные движители). Промежуточное место в этой классификации отдается водометному движителю.

Гидравлические движители широко применяются на всех судах водоизмещающего типа, воздушные движители - на быстроходных судах типа СВП и экранопланах. Из перечисленных движителей более подробно в пособии рассмотрены гребной винт (как основной из движителей, применяющихся на судах) и водометный движитель движение. Тяга движителя образуется за счет реактивных сил, возникающих при отбрасывании рабочей среды в сторону, обратную направлению поступательного движения судна. По характеру

рабочей среды движители в настоящее время условно делятся на гидравлические (рабочая среда - вода), воздушные (воздух) и газоводометные (водовоздушная смесь). В свою очередь гидравлические движители подразделяются на лопастные (весло, гребной винт, плицы гребного колеса и т.п.) и не лопастные (газоводометные движители). Промежуточное место в этой классификации отдается водометному движителю. Гидравлические движители широко применяются на всех судах водоизмещающего типа, воздушные движители - на быстроходных судах типа СВП и экранопланах. Из перечисленных движителей более подробно в пособии рассмотрены гребной винт (как основной из движителей, применяющихся на судах) и водометный движитель.

В предыдущем параграфе мы сказали, что существует пять основных типов силовой установки на судне, при этом, каждый из них характеризуется своей схемой валопровода, т.е. механической системой передачи вращения коленчатого вала двигателя к движителю (винту). Рассмотрим по порядку (рис. 107):

1. На судне установлен обычный стационарный конвертированный высокооборотный двигатель, который размещен в центре кокпита, в районе мидель-шпангоута. Коленчатый вал соединен через редуктор (для уменьшения числа оборотов) прямым гребным валом с винтом (линейная схема валопровода). Установка удобна в обслуживании, эффективна, проста, не требует дополнительных конструкторских решений.

2. Тот же двигатель расположен в кормовой части судна. При такой компоновке теряется ряд преиму­ществ, появляются новые (место в кокпите, снижение шума в каюте).Крупный недостаток - постоянный дифферент на корму и необходимость применения углового редуктора (V- образная, или угловая схема валопровода).

3. Схема валопровода с поворотно-откидной колонкой (Z - об­разная передача) сочетая в себе преимущества стационарного дви­гателя и ПЛМ (большая мощность мотора, хорошая мореходность, откидывание колонки при наездах на препятствие, легкость работ с винтом и обслуживания колонки, выхлоп газов в воду и т.д.) обладает одним крупным недостатком - высокой стоимостью.

4. Применение водометного движителя облегчает судоводителю жизнь за счет отсутствия каких-либо деталей, выступающих ниже киля судна, но достаточно усложняет ее за счет изменения ходовых качеств судна и, прежде всего, ухудшения управляемости. Двигатель устанавливается несколько дальше от кормы, чем в предыдущих двух случаях, что уменьшает дифферент на корму, отпадает необходимость в сцепной и реверсивной муфте

5. Валопровод подвесных лодочных моторов имеет Г-образную форму, при которой связь двигателя с движителем (винтом) осуществляется через редуктор с помощью промежуточного, т.н. торсионного, вала (рессоры). ПЛМ не занимает полезной площади кокпита, удобен в обслуживании и достаточно дешев

В ряде рассматриваемых вариантов валопроводов применяемые редукторы позволяют одновременно осуществлять реверсирование движителей - изменение направления вращения на противоположное. В общем случае, реверсирование осуществляется тремя способами : реверсом главного двигателя, включением реверсивной передачи и реверсом самого движителя. Реверс главного двигателя - изменение направления вращения коленчатого вала двигателя на обратное, и соответственно, изменение направления тяги винта. Такой реверс обеспечивается реверсивным устройством самого двигателя, основной частью которого яв­ляется передвижной распределительный вал, обеспечивающий заданную последовательность подачи топлива в цилиндры, в результате чего коленчатый вал двигателя начинает вращаться в обратном направлении. Реверсивная передача - это передача, с помощью которой изменяется направление вращения гребного вала (гребным называют вал, на котором закреплен гребной винт) на противоположное при неизменном направлении вращении коленчатого вала двигателя

Реверсирование достигается за счет реверсивных зубчатых редукторов, гидравлической передачи или соединительно-разъединительных муфт, позволяющих отключать часть редуктора с одним направлением вращения и подключать - с другим. На катерах применяются реверс - редукторы (реверсивная муфта) - специальный механизм, обеспечивающий изменение направления вращения гребного вала судна при неизменном направлении вращения коленчатого вала судового двигателя с включением в конструкцию редуктора для снижения или мультипликатора для повыше­ния числа оборотов вала. Реверс-редуктор соединяется с коленчатым валом фланцевыми соединениями посредством промежуточного вала либо непосредственно (см. рис. 108), ведомый вал - с гребным валом. Полость редуктора заполняется маслом, для проверки наличия и уровня которого есть указатель уровня (мерная линейка). Реверс движителя - изменение направления упора, создаваемого гребным винтом, обес­печивается поворотом лопастей у винтов регулируемого шага (ВРШ).

Гребной винт - устройство, преобразующее вращение вала двигателя в упор - силу, толкающую судно вперед. Он состоит из ступицы и нескольких (две и более) лопастей. Лопасть судового гребного винта представляет собой гидродинамический профиль, работающий под определенным углом наклона к водному потоку, отбрасывая его и создавая таким образом упор. Лопасть имеет входящую и выходящую кромки

Рис. 108. Два вида углового редуктора для стационарного двигателя:

а - с коротким промежуточным карданным валом;

б - закрепленный на двигателе.

и рабочую (нагнетающую) поверхность. Физическая суть работы гребного винта достаточно проста - при вращении на поверхности его лопастей, обращенных в сторону движения судна образуется разрежение, а обращенных назад - повышенное давление воды. Разность давлений создает силу, одна из составляющих которой и двигает судно вперед. Упор в большой степени зависит от угла атаки профиля лопасти. Оптимальное значение этого угла для быстроходных катеров 4 - 8°.

Основные понятия при рассмотрении темы и характеристик гребного винта:

Шаг винта - геометрическое перемещение (расстояние) любой точки лопасти вдоль оси за один полный оборот гребного винта при условии, что он совершает его в условно твердой среде.

Диаметр винта - диаметр окружности в которую вписаны спрямленные лопасти гребного винта (рис.109)

Шаговое отношение - отношение шага винта к диаметру

Дисковое отношение - отношение площади спрямленных лопастей (без ступицы) к площади диска, диаметр которого равен диаметру гребного винта (рис. 111). Шаговое и дисковое отношения являются основными параметрами гидродинамических характе ристик гребного винта, от которых зависит степень использования мощности двигателя и достижение максимально возможной скорости судном. Каждому гребному винту конкретного размера и фиксированного шага присуща своя винтовая характеристика. В принципе, для каждого корпуса судна и двигателя должен подбираться свой оптимальный гребной винт. Процесс расчета гребного винте сложен и базируется на использовании существующих графиков и диаграмм определения диаметра и шага винта в зависимости от мощности на валу. Для малых нагрузок и больших скоростей обычно выбирается двухлопастной гребной винт, для нормальных нагрузок (на катерах) - трехлопастной, для больших нагрузок и малых скоростей - четырехлопастной. Применение пятилопастного гребного винта значительно уменьшает вибрацию.

Скольжение винта - явление, возникающее при работе гребного винта в водной среде под нагрузкой, представляет собой разность между расчетным шагом винта и фактически пройденным расстоянием за один оборот. Скольжение почти никогда не бывает менее 15% шага винта, в большинстве случаев равно 30%, иногда - около 45-50% шага винта.

Коэффициент полезного действия (КПД) винта – отношение полезно используемой мощности к затраченной мощности двигателя, зависит, в основном, от диаметра и частоты вращения винта. КПД является оценкой эффективности работы гребного винта, его максимальная величина может достигать 70-80%, на малых судах 45-50%. Знать КПД винта необходимо для производства расчетов проектируемой скорости судна. КПД гребных винтов рассчитывается также по многочисленным графикам и диаграммам, основой которых служит коэффициент мощности (коэффициент нагрузки) - отношение произведения мощности двигателя, отданной винту, на частоту его вращения к поступательной скорости винта в попутном потоке

Большинство гребных винтов работает с коэффициентами нагрузки в пределах от 1 до 10. Структура коэффициента нагрузки показывает, что к высокому КПД гребного винта приводят небольшая мощность двигателя, низкая частота вращения и высокая скорость. Направление вращения гребного винта (рис. 110) в судовождении (правое - по часовой стрелке, левое -против часовой стрелки) устанавливают глядя с кормы в нос при работе винта на передний ход и определяют только для переднего хода.

Кавитация - явление "вскипания" воды и образования пузырьков пара на засасывающей стороне лопасти винта. При разрушении пузырьков создаются огромные местные давления, что является причиной выкрашивания лопасти. При длительной работе эти разрушения достигают больших величин, сказывающихся отрицательно на работе винта. Вторая стадия кавитации - возникновение на лопасти сплошной каверны, которая иногда может замыкаться даже за ее пределами.

Развиваемый винтом упор падает из-за резкого увеличения лобового сопротивления и искажения формы лопастей. При изменении шага и диаметра винта больше или меньше оптимальных значений возникают моменты, когда двигатель или не в состоянии вращать винт с большей частотой оборотов (не развивает номинальной мощности), либо, наоборот, не только развивает, но и легко превышает значение номинальной частоты вращения коленвала, а поскольку упор винта мал -судно все равно не развивает большой скорости. В этом случае вступают в силу понятия легкий (тяжелый) винт, которые также относятся к числу винтовых характеристик, о. которых было сказано выше.

Гребные винты изготавливают из бронзы, латуни, нержавеющей и углеродистой сталей, чугуна. Для гребных винтов малых судов применяют пластмассу. Металлические винты делаются литыми с последующей доводкой (обработкой).

Задача учета меняющегося сопротивления корпуса судна при изменении его нагрузки и более эффективного использования двигателя в этих условиях достаточно успешно решается применением гребного винта изменяемого шага (винт "мультипитч", не путать с винтом регулируемого шага -ВРШ). Ступица винта - металлическая, взаимозаменяемые лопасти - из полиамидных смол (последнее время из них изготовлена и ступица винта). Лопасти имеют жестко закрепленные пальцы (рис. 112), которые проходят в отверстия в торце носовой части ступицы 6 и входят в пазы поводка 4, имеющего мерную шкалу.

При повороте любой лопасти вокруг ее оси происходит синхронный разворот всех лопастей в сторону увеличения (уменьшения) шага винта. Закрепление лопастей в выбранном положении осуществляется гайкой 3. Втулка 5 имеет внутренний диаметр, равный диаметру гребного вала мотора. От осевого перемещения во втулке винт фиксируется гайкой 3 и стопорным винтом 8. Операция смены шага занимает при навыке 3-5 мин и не требует подхода к берегу и снятия винта. Для ПЛМ "Вихрь" такие винты выпускал Черноморский судостроительный завод.

Гребные винты регулируемого шага отличаются сложностью устройства, массивной ступицей и большой стоимостью, поскольку разворот лопастей для изменения шага винта у них производится дистанционно, в процессе работы (вращения). О таких винтах шла речь, когда мы говорили об изменении режима движения судна от "полного вперед" до "стоп" и "полного назад" только с помощью движителя. Преимущества ВРШ: возможность использования полной мощности двигателя на различных режимах движения судна и получения всего диапазона скоростей без изменения направления и частоты вращения гребного вала; экономия горючего и увеличение моторесурса двигателя. Недостатки ВРШ: сложность конструкции, снижение КПД двигателя из-за увеличенного размера ступицы и искажения профиля лопастей при их развороте на промежуточных режимах работы, низкая эффективность на заднем ходу. Для повышения КПД гребного винта на тяжелых водоизмещающих судах достаточно часто применяется кольцевая профилированная насадка (рис. 113), представляющая из себя замк­нутое кольцо с плоско-выпуклым профилем.. Площадь входного сечения насадки больше площади выходного, винт устанавливается в наиболее узком месте и с минимальным (0,01 D винта) зазором между краем лопасти и внутренней поверхностью насадки. При работе винта засасываемый поток увеличивает скорость из-за уменьшения проходного сечения насадки, вследствие чего уменьшается скольжение винта. Дополнительный упор создается и на самой насадке (из-за обтекания водой подобно - крылу). Действие водометного движителя основано на известном законе Ньютона: масса воды, отброшенная движителем в корму, создает в виде реакции упорное давление, движущее судно вперед.

Водометный движитель (водомет) можно представить себе в виде мощного насоса, забирающего воду из-под днища и выбрасывающего ее за транцем из сопла над водой. От гребного винта водомет отличается только тем, что винт (колесо насоса) установлен в трубе внутри судна. Управление судном и движение задним ходом в этом случае осуществляется различными способами. Наиболее у нас применимый способ управления - поворотом струи в выпускном сопле с помощью двустворчатого реверсивно-рулевого устройства, состоящего из двух плоских пластин (рулей), соединенных между собой и шарнирно навешенных на реверсивную коробку. В этом случае на переднем ходу рули перекладываются параллельно друг другу, изменяя направление выбрасываемой струи в ту или другую сторону, на заднем ходу судно не управляется. Возможно применение поворотного сопла и реверсивной заслонки, а также, поворотного водомета (рис. 114), что значительно повышает маневренность судна. Водометы используют преимущественно на легких быстроходных катерах, где большая мощность сочетается с малым весом катера.

Воздушные винты находят очень редкое применение на маломерных судах из-за низкого КПД, больших размеров и большого количества других недостатков и проблем, с которыми встречаются конструкторы, проектируя судно с таким движителем. Воздушные винты незаменимы при изготовлении судов-амфибий (рис. 115, 116), судов на воздушной подушке, т.е. таких судов, для которых подстилающей поверхностью может быть болото, снег, лед, ровный песок и т.п. Чаще других применяются двухлопастные винты. Существуют соответствующие формулы для расчета тяги винта, ширины лопасти, шага, диаметра и др. характеристик винта. Воздушные винты для катеров чаще всего выполняют деревянными, клееными из реек.

Заканчивая тему движителей и подводя краткие итоги можно ут­верждать, что максимальную ско­рость, наибольшую экономичность и надежность, а также наибольшую тягу из существующих движителей создает гребной винт. Наименьшие осадка и материальные потери для судоводителя при касании грунта достигаются при использовании водометных движителей, а упрощенный монтаж и удобство при обслуживании возможны при эксплуатации подвесных моторов и поворотно-откидных колонок.





Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта