Главная » Свадьба/Замужество » Представляем устойчивые технологии: топливные элементы. Что такое топливные элементы

Представляем устойчивые технологии: топливные элементы. Что такое топливные элементы

С точки зрения «зеленой» энергетики у водородных топливных элементов крайне высокий КПД - 60%. Для сравнения: КПД лучших двигателей внутреннего сгорания составляет 35-40%. Для солнечных электростанций коэффициент составляет всего 15-20%, но сильно зависит от погодных условий. КПД лучших крыльчатых ветряных электростанций доходит до 40%, что сравнимо с парогенераторами, но ветряки также требуют подходящих погодных условий и дорогого обслуживания.

Как мы видим, по этому параметру водородная энергетика является наиболее привлекательным источником энергии, но все же существует ряд проблем, мешающих ее массовому применению. Самая главная из них - процесс добычи водорода.

Проблемы добычи

Водородная энергетика экологична, но не автономна. Для работы топливному элементу нужен водород, который не встречается на Земле в чистом виде. Водород нужно получать, но все существующие сейчас способы либо очень затратны, либо малоэффективны.

Самым эффективным с точки зрения объёма полученного водорода на единицу затраченной энергии считается метод паровой конверсии природного газа . Метан соединяют с водяным паром при давлении 2 МПа (около 19 атмосфер, т. е. давление на глубине около 190 м) и температуре около 800 градусов, в результате чего получается конвертированный газ с содержанием водорода 55-75%. Для паровой конверсии необходимы огромные установки, которые могут быть применимы лишь на производстве.


Трубчатая печь для паровой конверсии метана - не самый эргономичный способ добычи водорода. Источник: ЦТК-Евро

Более удобный и простой метод - электролиз воды. При прохождении электрического тока через обрабатываемую воду происходит серия электрохимических реакций, в результате которых образуется водород. Существенный недостаток этого способа - большие энергозатраты, необходимые для проведения реакции. То есть получается несколько странная ситуация: для получения водородной энергии нужна… энергия. Во избежание возникновения при электролизе ненужных затрат и сохранения ценных ресурсов некоторые компании стремятся разработать системы полного цикла «электричество - водород- электричество», в которых получение энергии становится возможным без внешней подпитки. Примером такой системы является разработка Toshiba H2One.

Мобильная электростанция Toshiba H2One

Мы разработали мобильную мини-электростанцию H2One, преобразующую воду в водород, а водород в энергию. Для поддержания электролиза в ней используются солнечные батареи, а излишки энергии накапливаются в аккумуляторах и обеспечивают работу системы в отсутствие солнечного света. Полученный водород либо напрямую подается на топливные ячейки, либо отправляется на хранение во встроенный бак. За час электролизер H2One генерирует до 2 м 3 водорода, а на выходе обеспечивает мощность до 55 кВт. Для производства 1 м 3 водорода станции требуется до 2,5 м 3 воды.

Пока станция H2One не способна обеспечить электричеством крупное предприятие или целый город, но для функционирования небольших районов или организаций ее энергии будет вполне достаточно. Благодаря своей мобильности она может использоваться также как и временное решение в условиях стихийных бедствий или экстренного отключения электричества. К тому же, в отличие от дизельного генератора, которому для нормального функционирования необходимо топливо, водородной электростанции достаточно лишь воды.

Сейчас Toshiba H2One используется лишь в нескольких городах в Японии - к примеру, она снабжает электричеством и горячей водой железнодорожную станцию в городе Кавасаки.


Монтаж системы H2One в городе Кавасаки

Водородное будущее

Сейчас водородные топливные элементы обеспечивают энергией и портативные пауэр-банки, и городские автобусы с автомобилями, и железнодорожный транспорт (более подробно об использовании водорода в автоиндустрии мы расскажем в нашем следующем посте). Водородные топливные элементы неожиданно оказались отличным решением для квадрокоптеров - при аналогичной с аккумулятором массе запас водорода обеспечивает до пяти раз большее время полета. При этом мороз никак не влияет на эффективность. Экспериментальные дроны на топливных элементах производства российской компании AT Energy применялись для съемок на Олимпиаде в Сочи.

Стало известно, что на грядущих Олимпийских играх в Токио водород будет использоваться в автомобилях, при производстве электричества и тепла, а также станет главным источником энергии для олимпийской деревни. Для этого по заказу Toshiba Energy Systems & Solutions Corp. в японском городе Намиэ строится одна из крупнейших в мире станций по производству водорода. Станция будет потреблять до 10 МВт энергии, полученной из «зеленых» источников, генерируя электролизом до 900 тонн водорода в год.

Водородная энергетика - это наш «запас на будущее», когда от ископаемого топлива придется окончательно отказаться, а возобновляемые источники энергии не смогут покрывать нужды человечества. Согласно прогнозу Markets&Markets объем мирового производства водорода, который сейчас составляет $115 млрд, к 2022 году вырастет до $154 млрд. Но в ближайшем будущем массовое внедрение технологии вряд ли произойдет, необходимо еще решить ряд проблем, связанных с производством и эксплуатацией специальных энергоустановок, снизить их стоимость. Когда технологические барьеры будут преодолены, водородная энергетика выйдет на новый уровень и, возможно, будет так же распространена, как сегодня традиционная или гидроэнергетика.

Сэр Уильям Грове знал много об электролизе, поэтому он выдвинул гипотезу, что путем процесса (который расщепляет воду на составляющие водород и кислород путем проведения электричества через нее) он может производить , если провести его в обратном порядке. После расчётов на бумаге, он подошел к экспериментальной стадии и сумел доказать свои идеи. Доказанную гипотезу развили ученые Людвиг Монд и его помощник Чарльз Лангре, усовершенствовали технологию и еще в 1889 году дали ей название в которые входили два слова- "топливный элемент".

Сейчас это словосочетание крепко вошло в обиход автомобилистов. Вы безусловно слышали этот термин «топливный элемент» и не единожды. В новостях в интернете, по телевизору все чаще мелькают новомодные слова. Обычно они относятся к рассказам о новейших гибридных автомобилях или программах развития этих гибридных автомобилей.

Например, еще 11 лет назад в США была запущена программа "The Hydrogen Fuel Initiative". Программа была направлена ​​на разработку водородных топливных элементов и технологий инфраструктуры, необходимых для того, чтобы сделать транспортные средства использующие топливные элементы практичными и экономически продуманными, рентабельными к 2020 году. Кстати, за это время на программу было выделено более 1 млрд. долларов, что говорит о серьезной ставке, которую сделали власти Штатов на .

По другую сторону океана производители автомобилей также не дремали, начинали или продолжали проводить свои изыскания на тему машин с топливными элементами. , и даже продолжал работать над созданием надежной технологии топливных элементов.

Наибольшего успеха на данном поприще среди всех мировых автопроизводителей добились две японских автопроизводителя, и . Их модели на топливных элементах уже пошли в серийное производство, в тоже время их конкуренты следует прямо за ними.

Поэтому, топливные элементы в автомобильной индустрии- это надолго. Рассмотрим принципы работы технологии и ее применение в современных автомобилях.

Принцип работы топливного элемента


В сущности, . С технической точки зрения определить топливный элемент можно как электрохимическое устройство для преобразования энергии. Он преобразует частицы водорода и кислорода в воду, в процессе попутно производя электричество, постоянный ток.

Существует множество типов топливных элементов, некоторые из них уже используются в автомобилях, другие проходят исследовательские тесты. В большинстве из них используется водород и кислород в качестве основных химических элементов необходимых для преобразования.

Аналогичная процедура происходит в обычной батарее, отличие только в том, что уже имеет все необходимые химические вещества, требуемые для преобразования "на борту", в то время как топливный элемент может быть "заряжаться" от внешнего источника, благодаря чему процесс «производства» электричества может быть продолжен. Помимо водяного пара и электричества, другим побочным продуктом процедуры является выделяемое тепло.


Водородно-кислородный топливный элемент с протонообменной мембраной содержит протонопроводящую полимерную мембрану, которая разделяет два электрода — анод и катод. Каждый электрод обычно представляет собой угольную пластину (матрицу) с нанесённым катализатором — платиной или сплавом платиноидов и др. композиции.

На катализаторе анода молекулярный водород диссоциирует и теряет электроны. Катионы водорода проводятся через мембрану к катоду, но электроны отдаются во внешнюю цепь, так как мембрана не пропускает электроны.

На катализаторе катода молекула кислорода соединяется с электроном (который подводится из внешних коммуникаций) и пришедшим протоном и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

wikipedia.org

Применение в автомобилях

Из всех типов топливных элементов, по- видимому наилучшим кандидатом для применения в транспортных средствах стали топливные элементы на основе протонообменных мембран или как их называют на западе- Polymer Exchange Membrane Fuel Cell (PEMFC). Основными причинами этого являются его высокая удельная мощность и относительно низкая рабочая температура, а это в свою очередь означает, что у него не потребуется много времени для того чтобы привести топливные элементы в рабочий режим. Они оперативно разогреются и начнут производить необходимое количество электроэнергии. В ее основе используется также одна из самых простых реакций из всех типов топливных элементов.

Первое транспортное средство с этой технологией было сделано еще в 1994 году, когда Mercedes-Benz представил MB100 созданный на основе NECAR1 (новый электрический автомобиль 1). Помимо малой выходной мощности (всего 50 киловатт), самый большой недостаток этой концепции заключалась в том, что топливный элемент занимал весь объем грузового отсека фургона.


Кроме того, с точки зрения пассивной безопасности, это была ужасная идея для массового производства, принимая во внимание необходимость установки на борту массивного резервуара, заполненного легковоспламеняющимся водородом под давлением.

В течение следующего десятилетия технология развивалась и одна из последних концепций, созданных на топливных элементах от Мерседес имел выходную мощность 115 л.с. (85 квт) и диапазон действия около 400 километров перед дозаправкой. Конечно, немцы были не единственными пионерами в разработке топливных элементов будущего. Не забывайте про двух японцев, Toyota и . Одним из крупнейших автомобильных игроков стала Honda, который представил серийный автомобиль с силовой установкой на водородных топливных элементах. Продажи FCX Clarity в лизинг на территории США начались летом 2008 года, чуть позже реализация автомобиля перешла в Японию.

Еще дальше пошла Toyota с моделью Mirai, чья прогрессивная система топливных элементов, работающая на водороде, по- видимому способна предоставить футуристичному автомобилю диапазон действия в 520 км на одном баке, который может быть заправляемого менее чем за пять минут, так же как обычный . Показатели расхода топлива поразят любого скептика, они невероятны даже для автомобиля с классической силовой установкой расходует 3.5 литра независимо от того в каких условиях используется автомобиль, в городе, на шоссе или в смешанном цикле.

Прошло восемь лет. Honda потратила это время с пользой для своего дела. Второе поколение Honda FCX Clarity сейчас появляется в продаже. Ее батареи топливных элементов стали на 33% более компактными, чем у первой модели, удельная мощность увеличилась на 60%. Honda уверяет, что топливный элемент и интегрированный силовой агрегат в Clarity Fuel Cell по размерам сравним с двигателем V6, что оставляет достаточно внутреннего пространства для пяти пассажиров и их багажа.


Предполагаемый диапазон составляет 500 км, а стартовая цена новинки должна закрепиться на уровне в $60,000. Дорого? Наоборот, очень даже дешево. В начале 2000 автомобили с подобными технологиями стоили $100.000.

Специалисты в области энергетики отмечают, что в большинстве развитых стран быстро растет интерес к рассредоточенным источникам энергии сравнительно малой мощности. Главные преимущества этих автономных энергоустановок -умеренные капитальные затраты при строительстве, быстрый ввод в эксплуатацию, сравнительно простое обслуживание и хорошие экологические характеристики. При автономной системе электроснабжения не требуется вложений в линии электропередач и подстанции. Расположение автономных источников энергии непосредственно в местах потребления не только избавляет от потерь в сетях, но и повышает надежность электроснабжения.

Хорошо известны такие автономные источники энергии, как малые ГТУ (газотурбинные установки), двигатели внутреннего сгорания, ветроустановки и солнечные батареи на полупроводниках.

В отличие от двигателей внутреннего сгорания или турбин, работающих на угле / газе, топливные элементы не сжигают топливо. Они преобразовывают химическую энергию топлива в электричество при помощи химической реакции. Поэтому топливные элементы не производят большого количества парниковых газов, выделяющихся при сгорании топлива, таких как двуокись углерода (CO2), метан (CH4) и окись азота (NOx). Выбросы из топливных элементов представляют собой воду в форме пара и низкие уровни двуокиси углерода (или же выбросов CO2 нет вообще), если в качестве топлива для элементов используется водород. Кроме того, топливные элементы работают бесшумно, потому что они не включают шумные роторы высокого давления и при их эксплуатации отсутствуют шумы выхлопных газов и вибрация.

Топливный элемент преобразовывает химическую энергию топлива в электричество при помощи химической реакции с кислородом или другим окисляющим веществом. Топливные элементы состоят из анода (отрицательная сторона), катода (положительная сторона) и электролита, который обеспечивает перемещение зарядов между двумя сторонами топливного элемента (Рисунок: Принципиальная схема топливных элементов).

Электроны перемещаются от анода к катоду через внешний контур, создавая электричество постоянного тока. В связи с тем, что основным отличием разных типов топливных элементов является электролит, топливные элементы подразделяются по типу используемого электролита, т.е. высокотемпературные и низкотемпературные топливные элементы (ТЭПМ, ПМТЭ). Водород является наиболее распространенным топливом, но иногда также могут использоваться углеводороды, такие как природный газ и спирты (т.е. метанол). Топливные элементы отличаются от аккумуляторов тем, что для них требуется постоянный источник топлива и кислорода / воздуха для поддержания химической реакции, и они производят электроэнергию до тех пор, пока их подача осуществляется.

Топливные элементы имеют следующие преимущества по сравнению с обычными источниками энергии, такими как двигатели внутреннего сгорания или аккумуляторы:

  • Топливные элементы имеют более высокую эффективность, чем дизельные или газовые двигатели.
  • Большинство топливных элементов работает бесшумно, если сравнивать их с двигателями внутреннего сгорания. Поэтому они пригодны для зданий с особыми требованиями, например, больницы.
  • Топливные элементы не приводят к загрязнению, вызываемому сжигаемым ископаемым топливом; например, побочным продуктом топливных элементов, работающих на водороде, является только вода.
  • Если водород получается в результате электролиза воды, обеспечиваемого возобновляемым источником энергии, то при использовании топливных элементов парниковый газ не выделяется на протяжении всего цикла.
  • Для топливных элементов не требуется обычное топливо, такое как нефть или газ, поэтому можно избавиться от экономической зависимости от стран-производителей нефти и обеспечить большую энергетическую безопасность.
  • Топливные элементы не зависят от энергосетей, так как водород может производиться в любом месте, где есть вода и электроэнергия, и может распределяться производимое топливо.
  • При применении стационарных топливных элементов для производства энергии в точке потребления можно использовать децентрализованные энергосети, которые потенциально являются более стабильными.
  • Низкотемпературные топливные элементы (ТЭПМ, ПМТЭ) имеют низкий уровень передачи тепла, что делает их идеальными для различного применения.
  • Топливные элементы с более высокой температурой производят высококачественную технологическую тепловую энергию вместе с электричеством, и они хорошо подходят для когенерации (такой как совместное производство тепловой и электрической энергии для жилых домов).
  • Время работы значительно больше, чем время работы аккумуляторов, так как для увеличения времени работы требуется только большее количество топлива, а повышение производительности установки не требуется.
  • В отличие от аккумуляторов, топливные элементы имеют «эффект запоминания» при их заправке.
  • Техническое обслуживание топливных элементов является простым, так как они не имеют больших подвижных частей.

Наиболее распространенным топливом для топливных элементов является водород, так как он не производит выбросов вредных загрязняющих веществ. Однако могут использоваться и другие виды топлива, и топливные элементы, работающие на природном газе, считаются эффективным альтернативным вариантом, когда природный газ доступен по конкурентоспособным ценам. В топливных элементах поток топлива и окислителей проходит через электроды, которые разделены электролитом. Это вызывает химическую реакцию, в результате которой производится электроэнергия; при этом не требуется сжигать топливо или добавлять тепловую энергию, что обычно имеет место при традиционных способах производства электроэнергии. При использовании в качестве топлива природного чистого водорода, а в качестве окислителя кислорода, в результате реакции, которая происходит в топливном элементе, вырабатываются вода, тепловая энергия и электроэнергия. При использовании других видов топлива топливные элементы выделяют очень низкий уровень выбросов загрязняющих веществ и производят высококачественную надежную электроэнергию.

Преимущества топливных элементов, работающих на природном газе, являются следующими:

  • Преимущества для окружающей среды - Топливные элементы представляют собой чистый метод производства электроэнергии из ископаемого топлива. Между тем как топливные элементы, работающие на чистом водороде и кислороде, производят только воду, электроэнергию и тепловую энергию; другие типы топливных элементов выделяют ничтожно малое количество серных соединений и очень низкий уровень двуокиси углерода. Однако двуокись углерода, выделяемая топливными элементами, является концентрированной, и ее легко можно удерживать вместо того, чтобы выбрасывать в атмосферу.
  • Эффективность - Топливные элементы преобразовывают энергию, имеющуюся в ископаемом топливе, в электроэнергию намного эффективнее, чем традиционные способы производства электричества со сжиганием топлива. Это означает, что для производства одинакового количества электроэнергии требуется меньше топлива. По оценке Национальной лаборатории энергетических технологий 58 , могут выпускаться топливные элементы (в комбинации с турбинами, работающими на природном газе), которые будут работать в диапазоне мощности от 1 до 20 МВтэ с КПД 70%. Этот КПД намного выше, чем КПД, который может достигаться при помощи традиционных методов производства энергии в указанном диапазоне мощности.
  • Производство с распределением - Топливные элементы могут выпускаться очень малых размеров; это позволяет размещать их в тех местах, где требуется электроэнергия. Это касается установок для жилых, коммерческих, промышленных зданий и даже для транспортных средств.
  • Надежность - Топливные элементы являются полностью закрытыми устройствами без подвижных частей и сложного машинного оборудования. Это делает их надежными источниками электроэнергии, способными работать в течение многих часов. Кроме того, они являются почти бесшумными и безопасными источниками электроэнергии. Также в топливных элементах нет скачков электричества; это значит, что их можно использовать в тех случаях, когда нужен постоянно работающий, надежный источник электроэнергии.

До последнего времени менее популярными были топливные элементы (ТЭ), представляющие собой электрохимические генераторы, способные преобразовать химическую энергию в электрическую, минуя процессы горения, превращения тепловой энергии в механическую, а последней - в электроэнергию. Электрическая энергия образуется в топливных элементах благодаря химической реакции между восстановителем и окислителем, которые непрерывно поступают к электродам. Восстановителем чаще всего служит водород, окислителем - кислород или воздух. Совокупность батареи топливных элементов и устройств для подачи реагентов, отвода продуктов реакции и тепла (которое может утилизироваться) представляет собой электрохимический генератор.
В последнее десятилетие XX века, когда вопросы надежности электроснабжения и экологические проблемы приобрели особенно важное значение, многие фирмы в Европе, Японии и в США приступили к разработке и производству нескольких вариантов топливных элементов.
Наиболее простыми являются щелочные топливные элементы, с которых началось освоение этого вида автономных источников энергии. Рабочая температура в этих ТЭ составляет 80-95°С, электролитом является 30%-ный раствор едкого калия. Работают щелочные ТЭ на чистом водороде.
В последнее время большое распространение получил топливный элемент РЕМ с мембранами протонного обмена (с полимерным электролитом). Рабочая температура в этом процессе - также 80-95°С, но в качестве электролита используется твердая ионообменная мембрана с перфторсулфокислотой.
По общему признанию, наиболее привлекательным в коммерческом плане является топливный элемент с фосфорной кислотой PAFC, у которого КПД по выработке только электроэнергии достигает 40%, а при использовании выделенного тепла -85%. Рабочая температура у этого ТЭ 175—200°С, электролит - жидкая фосфорная кислота, пропитывающая карбид кремния, связанный тефлоном.

Пакет элемента снабжен двумя графитовыми пористыми электродами и орто-фосфорной кислотой в качестве электролита. Электроды покрыты платиновым катализатором. В реформере природный газ при взаимодействии с паром переходит в водород и СО, который доокисляется до СО2 в конверторе. Далее молекулы водорода под влиянием катализатора диссоциируют на аноде на ионы Н. Электроны, освобожденные в этой реакции, направляются через нагрузку к катоду. На катоде они реагируют с ионами водорода, диффундирующими через электролит, и с ионами кислорода, которые образуются в результате каталитической реакции окисления кислорода воздуха на катоде, образуя в конечном итоге воду.
К перспективным видам топливных элементов относится также ТЭ с расплавленным карбонатом типа MCFC. Этот ТЭ при работе на метане имеет КПД по электроэнергии 50-57%. Рабочая температура 540—650°С, электролит - расплавленный карбонат калиевой и натриевой щелочей в оболочке - матрице из литий-алюминиевого оксида LiA102.
И, наконец, наиболее перспективный топливный элемент - SOFC. Это твердооксидный топливный элемент, использующий любое газообразное топливо и наиболее пригодный для сравнительно крупных установок. Его КПД по электроэнергии составляет 50-55%, а при использовании в установках комбинированного цикла -до 65%. Рабочая температура 980—1000°С, электролит - твердый цирконий, стабилизированный иттрием.

На рис. 2 показана батарея SOFC из 24-х элементов, разработанная специалистами из корпорации Siemens Westinghouse Power Corporation (SWP - Германия). Эта батарея является основой электрохимического генератора, работающего на природном газе. Первые демонстрационные испытания энергоустановки такого типа мощностью 400 Вт были проведены еще в 1986 г. В последующие годы совершенствовалась конструкция твердооксидных топливных элементов и увеличивалась их мощность.

Наиболее успешными были демонстрационные испытания установки мощностью 100 кВт, сданной в эксплуатацию в 1999 г. Энергоустановка подтвердила возможность получения электроэнергии с высоким КПД (46%), а также показала высокую стабильность характеристик. Тем самым была доказана возможность эксплуатации энергоустановки не менее 40 тыс. часов при допустимом падении ее мощности.

В 2001 г. была разработана новая энергоустановка на твердооксидных элементах, работающая при атмосферном давлении. Батарея (электрохимический генератор) мощностью энергоустановки 250 кВт с комбинированной выработкой электроэнергии и тепла включала в себя 2304 твердооксидных трубчатых элемента. Кроме того, в состав установки входили инвертор, регенератор, подогреватель топлива (природного газа), камера сгорания для подогрева воздуха, теплообменник для подогрева воды за счет тепла уходящих газов и другое вспомогательное оборудование. При этом габаритные размеры установки были вполне умеренными: 2,6x3,0x10,8 м.
Определенных успехов в разработке крупных топливных элементов добились японские специалисты. Исследовательские работы были начаты в Японии еще в 1972 г., но значительные успехи были достигнуты только в середине 90-х годов. Опытные модули топливных элементов имели мощность от 50 до 1000 кВт, причем 2/3 из них работали на природном газе.
В 1994 г. в Японии была сооружена установка с топливными элементами мощностью 1 МВт. При общем КПД (с выработкой пара и горячей воды), равном 71%, установка имела КПД по отпуску электроэнергии не менее 36%. С 1995 г., по сообщениям прессы, в Токио эксплуатируется энергоустановка на топливных элементах с фосфорной кислотой мощностью 11 МВт, а общая мощность выпущенных топливных элементов к 2000 г. достигла 40 МВт.

Все перечисленные выше установки относятся к классу промышленных. Их разработчики постоянно стремятся к повышению мощности агрегатов, чтобы улучшить стоимостные характеристики (удельные затраты на кВт установленной мощности и стоимость выработанной электроэнергии). Но есть несколько компаний, которые ставят другую задачу: разработать простейшие установки для бытового потребления, в том числе - индивидуальные источники электропитания. И в этой области имеются существенные достижения:

  • компания Plug Power LLC разработала установку на топливных элементах мощностью 7 кВт для энергоснабжения дома;
  • корпорация Н Power выпускает используемые на транспорте зарядные агрегаты для аккумуляторов мощностью 50-100 Вт;
  • компания Intern. Fuel Cells LLC выпускает установки для транспорта и персональные источники питания мощностью 50-300 Вт;
  • корпорация Analytic Power разработала по заказу армии США персональные источники питания мощностью по 150 Вт, а также установки на топливных элементах для домашнего энергоснабжения мощностью от 3 до 10 кВт.

В чем же заключаются достоинства топливных элементов, побуждающие многочисленные компании вкладывать огромные средства в их разработку?
Помимо высокой надежности электрохимические генераторы имеют высокий КПД, что выгодно отличает их от паротурбинных установок и даже от установок с ГТУ простого цикла. Важным достоинством топливных элементов является удобство их использования в качестве рассредоточенных источников энергии: модульная конструкция позволяет соединить последовательно любое количество отдельных элементов с образованием батареи - идеальное качество для наращивания мощности.

Но самым важным аргументом в пользу топливных элементов являются их экологические характеристики. Выбросы NOX и СО на этих установках настолько малы, что, например, окружные Управления по качеству воздуха в регионах (где нормы экологического контроля являются наиболее жесткими в США) даже не упоминают это оборудование во всех требованиях, касающихся защиты атмосферы.

Многочисленные преимущества топливных элементов, к сожалению, не могут в настоящее время перевесить их единственный недостаток - высокую стоимость, В США, например, удельные капитальные затраты на сооружение энергоустановки даже с наиболее конкурентоспособными топливными элементами составляют примерно 3500 долл./кВт. И хотя правительство предоставляет субсидию в размере 1ООО долл./кВт, чтобы стимулировать спрос на эту технологию, стоимость сооружения таких объектов остается достаточно высокой. Особенно при сопоставлении с капитальными затратами на строительство мини-ТЭЦ с ГТУ или с двигателями внутреннего сгорания мегаваттно-го диапазона мощности, которые составляют примерно 500 долл./кВт.

В последние годы наметился определенный прогресс в деле снижения затрат на установки с ТЭ. Сооружение энергоустановок с ТЭ на базе фосфорной кислоты мощностью 0,2-1,0 МВт, о которых упоминалось выше, обошлось в 1700 долл./кВт. Стоимость производства энергии на таких установках в Германии при использовании их в течение 6000 ч в год по расчетам составляет 7,5-10 центов/кВт-ч. Установка РС25 мощностью 200 кВт, которую эксплуатирует энергокомпания Hessische EAG (Дарм-штадт), также имеет неплохие экономические показатели: стоимость электроэнергии, включая амортизационные отчисления, затраты на топливо и на обслуживание установки в сумме составили 15 центов/кВт-ч. Этот же показатель для ТЭС на буром угле составлял в энергокомпании 5,6 цента/кВт-ч, на каменном угле - 4,7 цента/кВт-ч, для парогазовых установок - 4,7 цента/кВт-ч и для дизельных электростанций - 10,3 цента/кВт-ч.

При сооружении более крупной установки на топливных элементах (N=1564 кВт), работающей с 1997 г. в Кельне, потребовались удельные капитальные затраты в количестве 1500-1750 долл./кВт, но стоимость собственно топливных элементов составила только 400 долл. /кВт

Все вышеизложенное показывает, что топливные элементы - это перспективный вид энергопроизводящего оборудования как для промышленности, так и для автономных установок коммунально-бытового сектора. Высокий КПД использования газа и превосходные экологические характеристики дают основания полагать, что после решения важнейшей задачи - снижения стоимости -этот вид энергетического оборудования будет востребован на рынке автономных систем тепло- и электроснабжения.

Топливный элемент - что это такое? Когда и как он появился? Зачем он нужен и почему о них в наше время так часто говорят? Каковы его область примения, характеристики и свойства? Неудержимый прогресс требует ответов на все эти вопросы!

Что такое топливный элемент?

Топливный элемент - это химический источник тока или электрохимический генератор, это устройство для преобразования химической энергии в электрическую. В современной жизни химические источники тока используются повсеместно и представляют собой аккумуляторы мобильных телефонов, ноутбуков, КПК, а также аккумуляторные батареи в автомобилях, источниках бесперебойного питания и т.п. Следующим этапом развития данной области будет повсеместное распространение топливных элементов и это уже никем неопровергаемый факт.

История топливных элементов

История топливных элементов - это ещё одна история о том, как некогда открытые на Земле свойства вещества нашли широкое применение далеко в космосе, а на рубеже тысячелетий вернулись с небес на Землю.

Всё началось в 1839 году , когда немецкий химик Кристиан Шёнбейн опубликовал принципы работы топливного элемента в «Философском журнале». В этом же году англичанин, выпускник Оксфорда, Уильям Роберт Гроув сконструировал гальванический элемент, в последствии названный гальваническим элементом Гроува, он же признан первым топливным элементом. Само название "топливный элемент" было подарено изобретению в год его юбилея - в 1889 году. Людвиг Монд и Карл Лангер - авторы термина.

Немного ранее, в 1874г., Жюль Верн в романе «Таинственный остров» предсказал нынешнюю энергетическую ситуацию, написав, что «Вода в один прекрасный день будет использоваться в качестве топлива, применяться будут водород и кислород, из которых она состоит».

Тем временем, новая технология электроснабжения постепенно совершенствовалась, а начиная с 50-х годов XX века уже и года не проходило без анонсов новейших изобретений в этой области. В 1958 году в США появился первый трактор, работающий на топливных элементах, в 1959г. вышел в свет 5кВт-ный источник питания для сварочной машины, и т.д. В 70-х годах водородные технологии взлетели в космос: появились самолёты и ракетные двигатели на водороде. В 60-х годах РКК "Энергия"разрабатывала топливные элементы для советской лунной программы. Программа "Буран" также не обошлась без них: были разработаны щелочные 10кВт-ные топливные элементы. А ближе к концу века топливные элементы пересекли нулевую высоту над уровнем моря - на их основе разработано электроснабжение немецкой подводной лодки. Возвращаясь на Землю, в 2009 году в США запустили в эксплуатацию первый локомотив. Естественно, на топливных элементах.

Во всей прекрасной истории топливных элементов интересно то, что колесо по-прежнему остается неимеющим аналогов в природе изобретением человечества. Дело в том, что по своему устройству и принципу действия топливные элементы аналогичны биологической клетке, которая, по сути, представляет собой миниатюрный водородно-кислородный топливный элемент. В итоге человек в очередной раз изобрел то, чем природа пользуется уже миллионы лет.

Принцип работы топливных элементов

Принцип работы топливных элементов очевиден даже из школьной программы по химии и именно он был заложен в опытах Уильяма Гроува 1839 года. Всё дело в том, что процесс электролиза воды (диссоциации воды) является обратимым. Как верно то, что, при пропускании электрического тока через воду, последняя расщепляется на водород и кислород, так верно и обратное: водород и кислород можно соединить с получением воды и электричества. В опыте Гроува два электрода размещались в камере, в которую подавались под давлением ограниченные порции чистого водорода и кислорода. В силу небольших объемов газа, а также благодаря химическим свойствам угольных электродов в камере происходила медленная реакция с выделением тепла, воды и, самое главное, с образованием разности потенциалов между электродами.

Простейший топливный элемент состоит из специальной мембраны, используемой как электролит, по обе стороны которой нанесены порошкообразные электроды. Водород поступает на одну сторону (анод), а кислород (воздух) - на другую (катод). На каждом электроде происходят разные химические реакции. На аноде водород распадается на смесь протонов и электронов. В некоторых топливных элементах электроды окружены катализатором, обычно выполненным из платины или других благородных металлов, способствующих протеканию реакции диссоциации:

2H 2 → 4H + + 4e -

где H 2 - двухатомная молекула водорода (форма, в которой водород присутствует в виде газа); H + - ионизированный водород (протон); е - - электрон.

С катодной стороны топливного элемента протоны (прошедшие через электролит) и электроны (которые прошли через внешнюю нагрузку) воссоединяются и вступают в реакцию с подаваемым на катод кислородом с образованием воды:

4H + + 4e - + O 2 → 2H 2 O

Суммарная реакция в топливном элементе записывается так:

2H 2 + O 2 → 2H 2 O

Работа топливного элемента основана на том, что электролит пропускает через себя протоны (по направлению к катоду), а электроны - нет. Электроны движутся к катоду по внешнему проводящему контуру. Это движение электронов и есть электрический ток, который может быть использован для приведения в действие внешнего устройства, подсоединенного к топливному элементу (нагрузка, например, лампочка):

В своей работе топливные элементы используют водородное топливо и кислород. Проще всего с кислородом - он забирается из воздуха. Водород может подаваться непосредственно из некой ёмкости или путем выделения его из внешнего источника топлива (природного газа, бензина или метилового спирта - метанола). В случае внешнего источника его необходимо химически преобразовать, чтобы извлечь водород. В настоящее время большинство технологий топливных элементов, разрабатываемых для портативных устройств, задействуют именно метанол.

Характеристики топливных элементов

    Топливные элементы являются аналогами существующих аккумуляторов в том смысле, что в обоих случаях электрическая энергия получается из химической. Но есть и принципиальные отличия:

    • они работают только пока топливо и окислитель поступают от внешнего источника (т.е. они не могут накапливать электрическую энергию),

      химический состав электролита в процессе работы не изменяется (топливный элемент не нуждается в перезарядке),

      они полностью не зависимы от электричества (в то время как обычные аккумуляторы запасают энергию из электросети).

    Каждый топливный элемент создаёт напряжение в 1В . Большее напряжение достигается последовательным их соединением. Увеличение мощности (тока) реализуется через параллельное соединение каскадов из последовательно соединенных топливных элементов.

    У топливных элементов нет жёсткого ограничения на КПД , как у тепловых машин (КПД цикла Карно является максимально возможным КПД среди всех тепловых машин с такими же минимальной и максимальной температурами).

    Высокий КПД достигается благодаря прямому превращению энергии топлива в электроэнергию. Если в дизель-генераторных установках топливо сначала сжигается, полученный пар или газ вращает турбину или вал двигателя внутреннего сгорания, которые в свою очередь вращают электрический генератор. Результатом становится КПД максимум в 42%, чаще же составляет порядка 35-38%. Более того, из-за множества звеньев, а также из-за термодинамических ограничений по максимальному КПД тепловых машин, существующий КПД вряд ли удастся поднять выше. У существующих топливных элементов КПД составляет 60-80% ,

    КПД почти не зависит от коэффициента загрузки ,

    Ёмкость в несколько раз выше , чем в существующих аккумуляторах,

    Полное отсутствие экологически вредных выбросов . Выделяется только чистый водяной пар и тепловая энергия (в отличие от дизельных генераторов, имеющих загрязняющие окружающую среду выхлопы и требующих их отвода).

Виды топливных элементов

Топливные элементы классифицируются по следующим признакам:

    по используемому топливу,

    по рабочему давлению и температуре,

    по характеру применения.

В целом, выделяют следующие типы топливных элементов :

    Твердооксидный топливный элемент (Solid-oxide fuel cells - SOFC);

    Топливный элемент с протонообменной мембраной (Proton-exchange membrane fuel cell - PEMFC);

    Обратимый топливный элемент (Reversible Fuel Cell - RFC);

    Прямой метанольный топливный элемент (Direct-methanol fuel cell - DMFC);

    Расплавной карбонатный топливный элемент (Molten-carbonate fuel cells - MCFC);

    Фосфорнокислый топливный элемент (Phosphoric-acid fuel cells - PAFC);

    Щелочной топливный элемент (Alkaline fuel cells - AFC).

Одним из типов топливных элементов, работающих при нормальных температурах и давлениях с использованием водорода и кислорода, являются элементы с ионообменной мембраной. Образующаяся вода не растворяет твердый электролит, стекает и легко отводится.

Проблемы топливных элементов

    Главная проблема топливных элементов связана с необходимостью наличия "упакованного" водорода, который можно было бы свободно приобрести. Очевидно, проблема должна решиться со временем, но пока ситуация вызывает легкую улыбку: что первично - курица или яйцо? Топливные элементы ещё не настолько развиты, чтобы строить водородные заводы, но их прогресс немыслим без этих заводов. Здесь же отметим проблему источника водорода. На настоящий момент водород получают из природного газа, но повышение стоимости энергоносителей повысит и цену водорода. При этом в водороде из природного газа неизбежно присутствие CO и H 2 S (сероводород), которые отравляют катализатор.

    Распространенные платиновые катализаторы используют очень дорогой и невосполнимый в природе металл - платину. Однако данную проблему планируется решить использованием катализаторов на основе ферментов, являющихся дешевым и легкопроизводимым веществом.

    Проблемой является и выделяющееся тепло. Эффективность резко возрастет, если генерируемое тепло направить в полезное русло - производить тепловую энергию для системы теплоснабжения, использовать в качестве бросового тепла в абсорбционных холодильных машинах и т.п.

Топливные элементы на метаноле (DMFC): реальное применение

Наивысший практический интерес на сегодняшний день представляют топливные элементы прямого действия на основе метанола (Direct Methanol Fuel Cell, DMFC). Ноутбук Portege M100, работающий на топливном элементе DMFC выглядит следующим образом:

Типичная схема DMFC-элемента содержит, помимо анода, катода и мембраны, несколько дополнительных комплектующих: картридж с топливом, датчик метанола, насос для циркуляции топлива, воздушный насос, теплообменник и т.д.

Время работы, например, ноутбука по сравнению с аакумуляторами планируется увеличить в 4 раза (до 20 часов), мобильного телефона - до 100 часов в активном режиме и до полугода в режиме ожидания. Подзарядка будет осуществляться добавлением порции жидкого метанола.

Основной задачей является поиск вариантов использования раствором метанола с наивысшей его концентрацией. Проблема в том, что метанол - достаточно сильный яд, смертельный в дозах от нескольких десятков граммов. Но концентрация метанола напрямую влияет на длительность работы. Если ранее применялся 3-10%-й раствор метанола, то уже появились мобильные телефоны и КПК с использованием 50%-го раствора, а в 2008 году в лабораторных условиях специалистами MTI MicroFuel Cells и, чуть позже, Toshiba получены топливные элементы, работающие на чистом метаноле.

За топливными элементами - будущее!

Наконец, об очевидности большого будущего топливных элементов говорит тот факт, что международная организация IEC (International Electrotechnical Commission), определяющая индустриальные стандарты для электронных устройств, уже объявила о создании рабочей группы для разработки международного стандарта на миниатюрные топливные элементы.

В США приняты несколько инициатив, направленных на разработку водородных топливных элементов, инфраструктуры и технологий, чтобы сделать автомобили на топливных элементах практичными и экономичными к 2020 году. На эти цели выделено более, чем один миллиард долларов.

Топливные элементы вырабатывают электричество тихо и эффективно, без загрязнения окружающей среды. В отличие от источников энергии, использующих ископаемое топливо, побочными продуктами от работы топливных элементов являются тепло и вода. Как это работает?

В этой статье мы кратко рассмотрим каждую из существующих топливных технологий на сегодняшний день, а так же расскажем об устройстве и работе топливных элементов, сравним их с другими формами получения энергии. Мы также обсудим некоторые из препятствий, с которыми сталкиваются исследователи, чтобы сделать топливные элементы практичными и доступными для потребителей.

Топливные элементы — это электрохимические устройства преобразования энергии . Топливный элемент преобразует химические вещества, водород и кислород в воду, в процессе чего вырабатывает электричество.

Другое электрохимическое устройство, с которым мы все хорошо знакомы, — аккумулятор . Батарея имеет все необходимые химические элементы внутри себя и превращает этих вещества в электричество. Это означает, что аккумулятор, в конце концов, «умирает» и вы либо выбрасываете, либо снова заряжаете его.

В топливном элементе химические вещества постоянно поступают в него, чтобы он никогда не «умирал». Электричество будет вырабатываться так долго, сколько будет происходить поступление химических веществ в элемент. Большинство топливных элементов, применяемых сегодня, используют водород и кислород.

Водород — наиболее распространенный элемент в нашей Галактике. Однако водород практически не существует на Земле в его элементарной форме. Инженеры и ученые должны извлекать чистый водород из водородных соединений, включая ископаемое топливо или воду. Чтобы добыть водород из этих соединений, нужно затратить энергию в виде высокой температуры или электричества.

Изобретение топливных элементов

Сэр Уильям Гроув изобрел первый топливный элемент в 1839 году. Гроув знал, что воду можно разделить на водород и кислород путем пропускания электрического тока через нее (процесс, называемый электролизом ). Он предположил, что в обратном порядке можно было бы получить электричество и воду. Он создал примитивный топливный элемент и назвал ее газовой гальванической батареей . Поэкспериментировав со своим новым изобретением, Гроув доказал свою гипотезу. Пятьдесят лет спустя, ученые Людвиг Монд и Чарльз Лангер придумали термин топливные элементы при попытке построить практическую модель для производства электроэнергии.

Топливный элемент будет конкурировать со многими другими устройствами конвертации энергии, в том числе с газовыми турбинами на городских электростанциях, двигателями внутреннего сгорания в автомобилях, а так же всевозможными аккумуляторами. Двигатели внутреннего сгорания, так же как и газовые турбины, сжигают различные виды топлива и используют давление, создаваемое путем расширения газов, чтобы выполнять механическую работу. Аккумуляторы преобразовывают химическую энергию в электрическую энергию, когда это необходимо. Топливные элементы должны выполнять эти задачи более эффективно.

Топливный элемент обеспечивает напряжение DC (постоянный ток), который может быть использован для питания электродвигателей, освещения и других электроприборов.

Существует несколько различных типов топливных элементов, каждый из которых использует различные химические процессы. Топливные элементы обычно классифицируются по их рабочей температуре и типу электролита, который они используют. Некоторые типы топливных элементов, хорошо годятся для использования в стационарных электростанциях. Другие могут быть полезными для небольших портативных устройств или для питания автомобилей. Основные типы топливных элементов включают в себя:

Топливный элемент с полимерной мембраной обмена Polymer exchange membrane fuel cell (PEMFC)

PEMFC рассматривается в качестве наиболее вероятного кандидата для применения на транспорте. PEMFC имеет как высокую мощность, так и относительно низкую рабочую температуру (в диапазоне от 60 до 80 градусов по Цельсию). Низкая рабочая температура означает, топливные элементы быстро смогут разогреться, чтобы начать генерацию электроэнергии.

Твердооксидные топливные элементы Solid oxide fuel cell (SOFC)

Эти топливные элементы наиболее подходят для крупных стационарных генераторов энергии, которые могли бы обеспечить электроэнергией фабрики или города. Этот тип топливных элементов работает при очень высоких температурах (от 700 до 1000 градусов по Цельсию). Высокая температура составляет проблему надежности, потому что часть топливных элементов может выйти из строя после нескольких циклов включения и выключения. Однако, твердооксидные топливные элементы являются очень стабильными при непрерывной работе. В самом деле, SOFC продемонстрировали самый длинный срок эксплуатации любых топливных элементов при определенных условиях. Высокая температура также имеет преимущество: пар, вырабатываемый топливными элементами, может быть направлен в турбины и генерировать больше электроэнергии. Этот процесс называется когенерацией тепла и электроэнергии и повышает общую эффективность системы.

Щелочной топливный элемент Alkaline fuel cell (AFC)

Это один из древнейших образцов для топливных элементов, используемый с 1960-х годов. AFC являются очень восприимчивыми к загрязнению, так как требуют чистый водород и кислород. Кроме того, они очень дороги, поэтому этот тип топливных элементов, вряд ли будет запущен в серийное производство.

Топливный элемент с расплавленным карбонатным электролитом Molten-carbonate fuel cell (MCFC)

Как SOFC, эти топливные элементы также лучше всего подходят для больших стационарных электростанций и генераторов. Они работают при 600 градусов по Цельсию, так что могут генерировать пар, который, в свою очередь, может быть использован, чтобы генерировать еще больше энергии. Они имеют более низкую рабочую температуру, чем твердооксидные топливные элементы, что означает, что они не нуждаются в таких термоустойчивых материалах. Это делает их немного дешевле.

Топливный элемент на фосфорной кислоте Phosphoric-acid fuel cell (PAFC)

Топливный элемент на фосфорной кислоте имеет потенциал для использования в небольших стационарных энергетических системах. Он работает на более высокой температуре, чем топливный элемент с полимерной мембраной обмена, поэтому он дольше разогревается, что делает его непригодным для использования в автомобилях.

Метаноловые топливные элементы Direct methanol fuel cell (DMFC)

Метаноловые топливные элементы сравнимы с PEMFC в отношении рабочей температуры, но не так эффективны. Кроме того, DMFC требуют довольно большого количества платины, выступающей в качестве катализатора, который делает эти топливные элементы дорогими.

Топливный элемент с полимерной мембраной обмена

Топливный элемент с полимерной мембраной обмена (PEMFC) является одной из наиболее перспективных технологий топливных элементов. PEMFC использует одну из простейших реакций среди любых топливных элементов. Рассмотрим, из чего он состоит.

1. Анод – негативная клемма топливного элемента. Он проводит электроны, которые высвобождаются из молекул водорода, после чего они могут быть использованы во внешней цепи. В нем выгравированы каналы, по которым газообразный водород распределяется равномерно по поверхности катализатора.

2. Катод — позитивная клемма топливного элемента, также имеет каналы для распределения кислорода по поверхности катализатора. Он также проводит электроны обратно из внешней цепи катализатора, где они могут соединиться с ионами водорода и кислорода с образованием воды.

3. Электролит-протонообменная мембрана . Это специально обработанный материал, который проводит только положительно заряженные ионы и блокирует электроны. У PEMFC, мембрана должна быть увлажненной, чтобы нормально функционировать и оставаться стабильной.

4. Катализатор — это специальный материал, который способствует реакции кислорода и водорода. Обычно он изготавливается из наночастиц платины, очень тонко нанесенных на копировальную бумагу или ткань. Катализатор имеет такую структуру поверхности, чтобы максимальная площадь поверхности платины могла быть подвержена воздействию водорода или кислорода.

На рисунке показан газообразный водород (H2), входящий под давлением в топливный элемент со стороны анода. Когда молекула H2 соприкасается с платиной на катализаторе, она разделяется на два H+ иона и два электрона. Электроны проходят через анод, где они используются во внешней схеме (выполнение полезной работы, например, вращение двигателя) и возвращаются к стороне катода топливного элемента.

Между тем, на стороне катода топливного элемента, кислород (O2) из воздуха проходит через катализатор, где формирует два атома кислорода. У каждого из этих атомов есть сильный отрицательный заряд. Этот отрицательный заряд привлекает два H+ иона через мембрану, где они объединяются с атомом кислорода и двумя электронами, пришедшими из внешней схемы, чтобы сформировать молекулу воды (H2O).

Эта реакция в одиночном топливном элементе производит только приблизительно 0,7 Вольт. Чтобы повысить напряжение до разумного уровня, много отдельных топливных элементов должны быть объединены, чтобы сформировать стек топливного элемента. Биполярные пластины используются для соединения одного топливного элемента с другим и подвергаются окислению с уменьшением потенциала. Большая проблема биполярных пластин – их стабильность. Металлические биполярные пластины могут разъедаться коррозией, и побочные продукты (железо и ионы хрома) уменьшают эффективность мембран топливного элемента и электродов. Поэтому низкотемпературные топливные элементы используют легкие металлы, графит и композитные соединения углерода и термореактивного материала (термореактивный материал — своего рода пластмасса, которая остается твердой, даже когда подвергается высоким температурам) в виде биполярного листового материала.

Эффективность топливного элемента

Сокращение загрязнения — одна из основных целей топливного элемента. Сравнивая автомобиль, приведенный в действие топливным элементом с автомобилем, приведенным в действие бензиновым двигателем и автомобилем, работающим от аккумулятора, вы увидите, как топливные элементы могли бы повысить эффективность автомобилей.

Так как у всех трех типов автомобилей есть многие одни и те же самые компоненты, мы проигнорируем эту часть автомобиля и сравним полезные действия до пункта, где производится механическая энергия. Давайте начнем с автомобиля на топливных элементах.

Если топливный элемент приведен в действие чистым водородом, его КПД может составить до 80 процентов. Таким образом, он преобразовывает 80 процентов энергетического содержания водорода в электроэнергию. Однако мы еще должны преобразовать электроэнергию в механическую работу. Это достигается электродвигателем и инвертором. КПД двигателя + инвертора также составляет приблизительно 80 процентов. Это дает полную эффективность приблизительно 80*80/100=64 процентов. У концептуального транспортного средства Хонды FCX по сообщениям есть 60-процентная эффективность использования энергии.

Если топливный источник не будет в виде чистого водорода, то транспортное средство будет также нуждаться в риформаторе. Риформаторы превращают углеводородные или спиртовые топлива в водород. Они вырабатывают тепло и производят CO и CO2 помимо водорода. Для очистки полученного водорода в них используются различные устройства, но эта очистка недостаточна и понижает эффективность топливного элемента. Поэтому исследователи решили сконцентрироваться на топливных элементах для транспортных средств, работающих на чистом водороде, несмотря на проблемы, связанные с производством и хранением водорода.

Эффективность бензинового двигателя и автомобиля на электрических батареях

Эффективность автомобиля, приведенного в действие бензином — удивительно низкая. Вся высокая температура, которая выходит в виде выхлопа или поглощается радиатором, является потраченной впустую энергией. Двигатель также использует много энергии, вращающей различные насосы, вентиляторы и генераторы, которые поддерживают его работу. Таким образом, полная эффективность автомобильного бензинового двигателя составляет приблизительно 20 процентов. Таким образом, только приблизительно 20 процентов содержания тепловой энергии бензина преобразуются в механическую работу.

У работающего от аккумулятора электромобиля есть довольно высокая эффективность. Батарея имеет КПД, приблизительно, 90 процентов (большинство батарей вырабатывает некоторое тепло или требует нагревания), и электродвигатель + инвертор с КПД, приблизительно 80 процентов. Это дает полную эффективность, приблизительно, 72 процента.

Но это не все. Для того, чтобы электромобиль двигался, электричество должно быть сначала где-нибудь произведено. Если это была электростанция, которая использовала процесс сгорания ископаемого топлива (а не ядерную, гидроэлектрическую, солнечную или ветровую энергию), то только приблизительно 40 процентов топлива, потребленного электростанцией, были преобразованы в электричество. Плюс, процесс зарядки автомобиля требует преобразования мощности переменного тока (AC) к мощности постоянного тока (DC). У этого процесса КПД приблизительно 90 процентов.

Теперь, если мы смотрим на целый цикл, эффективность электромобиля составляет 72 процента для самого автомобиля, 40 процентов для электростанции и 90 процентов для зарядки автомобиля. Это дает полную эффективность 26 процентов. Полная эффективность значительно варьируется в зависимости от того, какая электростанция используется для зарядки аккумулятора. Если электричество для автомобиля произведено, например, гидроэлектростанцией, то эффективность электромобиля составит приблизительно 65 процентов.

Ученые исследуют и совершенствуют проекты, чтобы продолжать повышать эффективность топливного элемента. Один из новых подходов должен объединить топливный элемент и работающие от аккумулятора транспортные средства. Разрабатывается концептуальное транспортное средство, приводимое в действие гибридной трансмиссией с подпиткой от топливного элемента. Оно использует литиевую батарею, приводящую автомобиль в действие, в то время как топливный элемент перезаряжает батарею.

Транспортные средства на топливных элементах потенциально так же эффективны как работающий от аккумулятора автомобиль, который заряжается от электростанции, не использующей ископаемое топливо. Но достижение такого потенциала практическим и доступным способом может оказаться трудным.

Зачем нужно использовать топливные элементы?

Основной причиной является все, что связано с нефтью. Америка должна импортировать почти 60 процентов своей нефти. К 2025 г. импорт, как ожидается, вырастет до 68%. Две трети нефти американцы используют ежедневно для перевозок. Даже если каждый автомобиль на улице был бы гибридным автомобилем, к 2025 году в США все равно пришлось бы использовать то же количество нефти, которое потреблялось американцами в 2000 году. В самом деле, Америка потребляет четверть всей нефти, добываемой в мире, хотя только 4,6% мирового населения живет здесь.

Эксперты ожидают, что цены на нефть продолжат расти в течение следующих нескольких десятилетий, так как более дешевые источники истощаются. Нефтяные компании должны разрабатывать нефтяные месторождения во все более сложных условиях, отчего будут повышать цены на нефть.

Опасения простираются далеко за пределы экономической безопасности. Много средств, поступающих от продажи нефти, расходуются на поддержание международного терроризма, радикальных политических партий, нестабильной обстановки в нефтедобывающих регионах.

Использование нефти и других видов ископаемого топлива для получения энергии производит загрязнение. Оно наилучшим образом подходит для всех найти альтернативу-сжигание ископаемого топлива для получения энергии.

Топливные элементы являются привлекательной альтернативой нефтяной зависимости. Топливные элементы вместо загрязнения производят чистую воду в качестве побочного продукта. Хотя инженеры временно сосредоточились на производстве водорода из различных ископаемых источников, таких как бензин или природный газ, изучаются возобновляемые, экологически чистые способы получения водорода в будущем. Самым перспективным, естественно, станет процесс получения водорода из воды

Зависимость от нефти и глобальное потепление — международная проблема. Несколько стран совместно участвуют в развитии исследований и разработок для технологии топливных элементов.

Очевидно, что ученые и производители должны немало потрудиться, прежде чем топливные элементы станут альтернативой современным методам производства энергии. И все же, при поддержке всего мира и глобальном сотрудничестве, жизнеспособная энергетическая система на базе топливных элементов может стать реальностью уже через пару десятилетий.





Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта